Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © 2003 - The.

Slides:



Advertisements
Presentazioni simili
Capitolo 1 Funzioni.
Advertisements

2. Introduzione alla probabilità
Funzioni Una funzione (o applicazione) fra due insiemi A e B è una
Variabili aleatorie discrete e continue
La probabilità.
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
Capitolo 8 Sistemi lineari.
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
Vettori e matrici algebrici
Autovalori e autovettori
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
Corsi Abilitanti Speciali Classe 59A III semestre - 3
INSIEMI INSIEME= gruppo di oggetti di tipo qualsiasi detti elementi dell’insieme. Un insieme è definito quando viene dato un criterio non ambiguo che.
1 2. Introduzione alla probabilità Definizioni preliminari: Prova: è un esperimento il cui esito è aleatorio Spazio degli eventi elementari : è linsieme.
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Definizioni Chiamiamo esperimento aleatorio ogni fenomeno del mondo reale alle cui manifestazioni può essere associata una situazione di incertezza. Esempi:
Definizione e caratteristiche
Analisi delle Decisioni Funzioni di utilita’ e lotterie
Chiara Mocenni - Sistemi di Supporto alle Decisioni I – aa Sistemi di Supporto alle Decisioni I Lezione 2 Chiara Mocenni Corso di laurea L1.
Metodi Probabilistici, Statistici e Processi Stocastici Università Carlo Cattaneo Emanuele Borgonovo Metodi Probailistici, Statistici e Processi Stocastici.
Elementi di Matematica
Le Variabili Casuali Corso di Teoria dell’Inferenza Statistica 1
Corso di biomatematica Lezione 2: Probabilità e distribuzioni di probabilità Davide Grandi.
STATISTICA a.a DISTRIBUZIONE BINOMIALE (cenni)
LA PROBABILITA’.
Impostazione Assiomatica del Calcolo della Probabilità
Corso di Matematica Discreta I Anno
Corso di Matematica Discreta cont. 2
Lezione 4 Probabilità.
PROBABILITÀ La probabilità è un giudizio che si assegna ad un evento e che si esprime mediante un numero compreso tra 0 e 1 1 Evento con molta probabilità.
La probabilità Schema classico.
Elementi di teoria della probabilità e distribuzioni di probabilità
Calcolo delle Probabilità
QUALCHE LUCIDO DI RIPASSO… 1. Esperimento casuale ( e. aleatorio) risultato Esperimento condotto sotto leffetto del caso: non è possibile prevederne il.
Teorie e Tecniche di Psicometria
Funzioni Dati due insiemi non vuoti A e B,
1.PROBABILITÀ A. Federico ENEA; Fondazione Ugo Bordoni Scuola estiva di fonetica forense Soriano al Cimino 17 – 21 settembre 2007.
Le variabili casuali e la loro distribuzione di probabilità Generalmente, lanciando un dado, si considera il valore numerico della faccia uscita.
PROBABILITA’.
Impostazione Assiomatica del Calcolo della Probabilità
Cap. 15 Caso, probabilità e variabili casuali Cioè gli ingredienti matematici per fare buona inferenza statistica.
è … lo studio delle caratteristiche di regolarità dei fenomeni casuali
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
PROBABILITA’ Scienza che studia i fenomeni retti dal caso EVENTO (E): avvenimento che può accadere oppure no 1.certo: se si verifica sempre (es. nel lancio.
Probabilità e Variabili Casuali
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
Martina Serafini Martina Prandi
Calcolo delle probabilità a cura di Maurizio Brizzi
“Teoria e metodi della ricerca sociale e organizzativa”
Master in Neuropsicologia ClinicaElementi di Statistica I 17 maggio / 23 Analisi bivariata Per ogni unità statistica si considerano congiuntamente.
2) PROBABILITA’ La quantificazione della ‘possibilità’ del verificarsi di un evento casuale E è detta probabilità P(E) Definizione classica: P(E) è il.
La variabile casuale (v.c.) è un modello matematico in grado di interpretare gli esperimenti casuali. Infatti gli eventi elementari  che compongono lo.
Spiegazione di alcuni concetti
Distribuzioni di probabilità di uso frequente
PROBABILITÀ Corsi Abilitanti Speciali Classe 59A III semestre - 2.
Eventi aleatori Un evento è aleatorio (casuale) quando non si può prevedere con certezza se avverrà o meno I fenomeni (eventi) aleatori sono studiati.
ELEMENTI DI CALCOLO DELLE PROBABILITA’
Elementi di teoria delle probabilità
TEORIA ELEMENTARE DEGLI INSIEMI
Elementi di teoria della probabilità e distribuzioni di probabilità.
In alcuni casi gli esiti di un esperimento possono essere considerati numeri naturali in modo naturale. Esempio: lancio di un dado In atri casi si definisce.
La probabilità matematica
1 DISTRIBUZIONI DI PROBABILITÁ. 2 distribu- zione che permette di calcolare le probabilità degli eventi possibili A tutte le variabili casuali, discrete.
METODI E TECNOLOGIE PER L’INSEGNAMENTO DELLA MATEMATICA Lezione n°17.
1 VARIABILI CASUALI. 2 definizione Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico). Esempi l’esito.
ELEMENTI DI CALCOLO DELLE PROBABILITA’. Evento Aleatorio Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado)
1 TEORIA DELLA PROBABILITÁ. 2 Cenni storici i primi approcci alla teoria della probabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli)
Probabilità Definizione di probabilità La definizione di probabilità si basa sul concetto di evento, ovvero sul fatto che un determinato esperimento può.
Teoria dei Sistemi di Trasporto Tematica 4: Elementi minimi di teoria della probabilità.
Transcript della presentazione:

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Capitolo 11 Probabilità

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Fenomeni deterministici e fenomeni casuali. Sistema meccanico deterministico: moto rettilineo uniforme (Velocità costante: 10m/s) – Dopo 1s: percorsi 10m, – Dopo 2s: percorsi 20m, –... Siamo quindi in grado di predire esattamente il suo moto. Sistema non deterministico (casuale): immaginiamo di lanciare un dado a sei facce senza mai averne visto uno, né averne sentito parlare. – Al primo lancio: esce 4, – Al secondo lancio: esce 2, – Al terzo lancio: esce 1, –... Il risultato non è prevedibile prima del lancio stesso. Un solo lancio non porta a ipotizzare il concetto di casualità; ma – quando mi accorgo che il dado può dare diversi risultati ; – quando mi accorgo che questi risultati non sono prevedibili ; Si tratta di un fenomeno la cui realizzazione è condizionata dal caso. La casualità è quindi legata a fenomeni che ammettono più di un esito. Un fenomeno casuale, o aleatorio, è un fenomeno osservabile ma non prevedibile.

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Dado e casualità Lunica certezza che abbiamo è che il punteggio che otteniamo in ogni lancio è compreso tra 1 e 6. Spazio ambiente S. Lesperienza ci suggerisce che non cè nesso tra lesito di un lancio e i successivi. Indipendenza dei risultati di lanci consecutivi. Lesperienza ci suggerisce che a ogni lancio ci aspettiamo che possa uscire indifferentemente una qualsiasi delle sei facce. Legge della casualità di ogni singolo lancio. Come vedremo questo non significa che non siamo in grado di dire nulla sullesito del lancio, ad esempio lesperienza quotidiana ci insegna che su dieci lanci consecutivi ottenere per dieci volte lo stesso punteggio sia un evento in qualche modo eccezionale, almeno psicologicamente. Scopo di questo capitolo è imparare a trattare analiticamente queste informazioni per ricavarne delle leggi che regolano la casualità.

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Spazio Ambiente S Prendiamo un dado e indichiamo con S = {f 1, f 2, f 3, f 4, f 5, f 6 } linsieme costituito dalle sue 6 facce. S contiene tutti i possibili esiti del fenomeno ed è detto spazio ambiente. I suoi elementi saranno detti eventi elementari. In tutto abbiamo 2 6 = 64 sottoinsiemi di S tra cui unico sottoinsieme senza elementi {f 1 }, {f 4 } sottoinsiemi con un solo elemento {f 1, f 2 }, {f 3, f 5 } sottoinsiemi con due elementi... Ogni possibile sottoinsieme di S sarà chiamato evento.

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Operazioni tra eventi Indichiamo con A e B gli eventi A = {f 2, f 4, f 6 } (ho un risultato pari) B = {f 1, f 2, f 3 } (ho un risultato più piccolo di 4) Indicheremo con AB lintersezione e con A + B lunione. intersezione di due eventi: entrambi gli eventi accadano, AB = {f 2, f 4, f 6 } {f 1, f 2, f 3 } = {f 2 }, avere un risultato pari più piccolo di 4. unione di due eventi corrisponde al fatto che almeno uno degli eventi accada, A + B = {f 2, f 4, f 6 } {f 1, f 2, f 3 } = {f 1, f 2, f 3, f 4, f 6 }. Il complementare di un evento corrisponde al fatto che quellevento non accada, A = {f 2, f 4, f 6 } = {f 1, f 3, f 5 }, ossia se non esce un numero pari.

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Insiemi mutuamente esclusivi (partizioni) Due insiemi A e B si dicono mutuamente esclusivi se hanno intersezione vuota, ossia se AB =. Più insiemi (A 1,A 2,..., A n ) sono mutuamente esclusivi se lo sono a due a due in tutti i modi possibili A i A j =, i j. Tre o più insiemi possono avere intersezione nulla ma non essere mutuamente esclusivi. Definizione di partizione dello spazio ambiente S. Chiamiamo partizione dello spazio ambiente S una classe di sottoinsiemi (eventi) mutuamente esclusivi la cui unione è linsieme S. Quindi, A 1,... A n,...sono una partizione di S se valgono le seguenti due proprietà: Gli insiemi sono mutuamente esclusivi, i j, A i A j =. Lunione degli insiemi è tutto S, ossia A 1 + A A n +... = S.

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl... la probabilità è il grado di fiducia in una scala tra 0 e 1 con cui un evento occorre. Per convenzione, un evento impossibile ha probabilità 0, mentre un evento certo ha probabilità 1...J.Bernoulli Assiomi della probabilità Sia S un insieme e A la classe di eventi. La probabilità è una funzione P :AR+ 0 che associa a ogni evento A A un numero P(A). Questa funzione deve soddisfare le seguenti proprietà: 1. per ogni evento A, P(A) 0; 2. P(S) = 1; 3. se AB =, allora P(A + B) = P(A) + P(B). Osservazione: la probabilità in uno spazio infinito non viene definita su ogni sottoinsieme di S, ma solamente su ogni evento della famiglia A. Quindi, ogni volta che scriveremo P(A), dovremo essere sicuri che A sia un evento di A. La terna (S, A, P) è detta spazio di probabilità.

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Conseguenze degli assiomi della probabilità Dagli assiomi della probabilità discendono le seguenti relazioni P( ) = 0. Per ogni evento A, P(A) = 1 P(A). Per ogni coppia A e B di eventi, P(A) = P(AB) + P(AB). Se A è un evento e B 1,B 2,..., B n sono eventi che formano una partizione di S, P(A) = P(AB 1 ) + P(AB 2 ) + · · · + P(AB n ). Per ogni coppia A e B di eventi, P(A + B) = P(A) + P(B). P(AB). Per ogni coppia A e B di eventi, P(A + B) P(A) + P(B). Se B A, allora P(B) P(A). Esempio: il modo più intuitivo di introdurre la probabilità di un evento si basa sul rapporto tra il numero dei casi favorevoli e il numero dei casi possibili. Si pensi alla situazione del lancio di una moneta.

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Fenomeni casuali Sesso del nascituro. Luisa aspetta un bambino. Indichiamo con X il sesso del nascituro. X può assumere i valori M (maschio) e F (femmina) con probabilità 1/2. I risultati possibili sono 2. I valori che X può assumere sono M e F, quindi S = {x 1, x 2 }, con x 1 = M e x 2 = F. Ipotizzando che la probabilità che X assuma il valore M o F sia 1/2, abbiamo p 1 = 1/2, p 2 = 1/2. Dado equilibrato. Prendiamo un dado non truccato e indichiamo con X il risultato di un lancio. I risultati possibili sono 6. I valori che il dado può assumere sono i numeri interi tra 1 e 6 e quindi S = {x 1, x 2, x 3, x 4, x 5, x 6 }, dove x 1 = 1, x 2 = 2, x 3 = 3, x 4 = 4, x 5 = 5, x 6 = 6. La probabilità che X assuma ogni valore intero tra 1 e 6 è 1/6 e quindi p 1 = 1/6, p 2 = 1/6, p 3 = 1/6, p 4 = 1/6, p 5 = 1/6, p 6 = 1/6. La probabilità quindi si distribuisce sui possibili risultati.

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Variabile aleatoria o casuale Definizione. Dato uno spazio di probabilità (S,A, P) si chiama variabile aleatoria unapplicazione X : S R tale che per ogni x R, linsieme {s S : X(s) x} sia in A. Perché questa definizione? Dire che X è una variabile aleatoria significa che è possibile calcolare P({s S : X(s) I}) (infatti si può calcolare la probabilità solo sugli eventi).

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl V.a. (caso discreto) Sono quei fenomeni che hanno un numero finito o numerabile di risultati. I risultati di una variabile aleatoria discreta X formano linsieme dei possibili valori assunti R = {x 1, x 2,..., x N,...}. Gli eventi sono tutti gli insiemi del tipo A = {X I}, dove I è un qualunque sottoinsieme dellinsieme dei possibili risultati R. Diremo che è assegnata la legge della variabile aleatoria discreta X se è assegnato linsieme dei possibili valori assunti R, e la probabilità con cui X assume ciascun valore dove pX è la probabilità che X assuma il valore x k.

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl V.a. (caso continuo) Sono quei fenomeni che possono assumere tutti i possibili valori di un intervallo reale Nel caso continuo tutti i risultati x di un intervallo R = {x R : a < x < b} = (a, b) sono possibili (anche se non equiprobabili). Sono ammessi intervalli del tipo R = (, b), R = (a,+) oppure R = R. Gli eventi legati a una variabile aleatoria continua sono tutti gli insiemi del tipo A = {X I}, La numerosità dei possibili risultati ci costringe a parlare di densità di probabilità al posto di probabilità di ogni singolo risultato (che è nulla).

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Segue…

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Segue…

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Esempio: estrazione da unurna. Segue…

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Segue…

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Segue…

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Riassunto

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Segue…

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Segue…

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Esempio: legge dei grandi numeri e dado a 6 facce

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl Segue…

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl

Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The McGraw-Hill Companies, srl