Elettrostatica 3 23 maggio 2011

Slides:



Advertisements
Presentazioni simili
Le forze ed i loro effetti
Advertisements

Flusso del campo elettrico e teorema di Gauss
Onde elettromagnetiche 21 ottobre 2013
Elettrostatica 6 30 maggio 2011
Il potenziale elettrico
Meccanica 7 28 marzo 2011 Corpi estesi. Forze interne al sistema
Meccanica 6 21 marzo 2011 Cambiamento di sistema di riferimento
CINEMATICA SINTESI E APPUNTI.
Fenomeni Ondulatori una perturbazione e’ la variazione rispetto alla configurazione di equilibrio di una o piu’ grandezze caratteristiche di un sistema.
COORDINATE POLARI Sia P ha coordinate cartesiane
Il campo elettrico - Lo chiamiamo campo elettrico,
Fisica 2 18° lezione.
Fisica 2 Elettrostatica
Magnetostatica 1 6 giugno 2011
Magnetostatica 3 6 giugno 2011
Fisica 2 Elettrostatica
Fisica 2 Corrente continua
Fisica 2 Elettrostatica
Fisica 2 Elettrostatica
Fisica 2 Elettrostatica
Meccanica 8 31 marzo 2011 Teorema del momento angolare. 2° eq. Cardinale Conservazione del momento angolare Sistema del centro di massa. Teoremi di Koenig.
Meccanica 2 1 marzo 2011 Cinematica in una dimensione
Meccanica aprile 2011 Oscillatore armonico, energia meccanica
Fisica 2 Elettrostatica
Esercizio 1 Un guscio sferico isolante di raggio R=0.1 m e spessore trascurabile, porta una carica positiva Q=1mC distribuita uniformemente sulla superficie.
Meccanica 5 31 marzo 2011 Lavoro. Principio di sovrapposizione
Magnetostatica 2 15 ottobre 2012
Campi elettrici nella materia 8 ottobre 2012
ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA
M. UsaiElettromagnetismo applicato allingegneria Elettrica ed Energetica_3c ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.
4. Il Campo Elettrico Riesaminiamo la legge di Coulomb: Problema
Punto di arrivo: Equazioni di Maxwell (vuoto)
I CONDENSATORI Il condensatore
Flusso Flusso del campo elettrico Superficie aperta Superficie chiusa
F = componente di F lungo r: Costante di proporzionalità
Capacità elettrica Cioè dove C è la capacità del conduttore
Energia Potenziale Elettrica
Prof. Antonello Tinti La corrente elettrica.
CAMPO ELETTRICO E POTENZIALE
G. Pugliese, corso di Fisica Generale
Il Campo elettrico Come si manifesta l’azione a distanza tra due cariche q e Q? Q carica “privilegiata”: SORGENTE DEL CAMPO ELETTRICO ur versore r.
Distribuzione sferica uniforme
I conduttori in un campo elettrostatico
G. Pugliese, corso di Fisica generale
Grandezze scalari e vettoriali
Terza Lezione Applicazioni del teorema di Gauss, Teorema di Gauss in forma differenziale, concetti di potenziale e gradiente.
ELETTROSTATICA NELLA MATERIA
ELETTROOSTATICA IN “APPROCCIO GLOBALE” • Legge di Gauss;
Capacità elettrica  Condensatore
CORRENTE ELETTRICA Applicando una d.d.p. ai capi di un filo conduttore si produce una corrente elettrica. Il verso della corrente è quello del moto delle.
ELETTRICITÀ Quando alcuni corpi (vetro, ambra, ...) sono strofinati con un panno di lana, acquistano una carica elettrica, cioè essi acquistano la proprietà.
Nel S.I. il campo elettrico si misura in N/C.
PRIMO PRINCIPIO DELLA DINAMICA
5. Fenomeni di elettrostatica
Elettromagnetismo 2. Il campo elettrico.
(Potenziale ed energia potenziale)
(Energia potenziale e potenziale)
(Flusso e legge di Gauss)
Testi e dispense consigliati
E se la carica non fosse puntiforme?
FISICA presentazione delle attività formative docente: Lorenzo Morresi
Data una carica puntiforme Q
centro di massa e momento di inerzia
Campo Elettrico Definizione operativa di campo elettrico: Il vettore campo elettrico associato ad una determinata carica sorgente Q, posta in un.
Energia potenziale elettrica: il lavoro nel campo elettrico; energia potenziale elettrica nel campo di una carica puntiforme; la conservazione dell’energia.
CARICA ELETTRICA strofinato con seta strofinata con materiale acrilico Cariche di due tipi: + Positiva - Negativa repulsiva attrattiva.
Definizione di Flusso Il flusso è la misura di quanto materiale o campo passa attraverso una superficie nel tempo. Se si parla di campo elettrico basterà.
Le cariche elettriche La materia è costituita fondamentalmente da atomi. Un atomo può essere schematizzato come segue: Al centro si trova il nucleo.
Cariche elettriche, forze e campi
Transcript della presentazione:

Elettrostatica 3 23 maggio 2011 Campo elettrico E Dimensioni e unità di misura di E Principio di sovrapposizione per E Linee di campo Distribuzione continua di carica. Densità di carica Campo elettrico generato da una distribuzione continua di carica Moto di cariche in un campo elettrico uniforme Dipolo elettrico

Campo elettrico di una carica Esploriamo l’azione di una carica Q mediante una seconda carica “di prova” q Questa carica subirà la forza di Coulomb Questa forza è proporzionale alla grandezza della carica esploratrice q Se dividiamo la forza per il valore di questa carica otteniamo una nuova grandezza, il campo elettrico, che dipende soltanto dal valore della prima carica e dalla distanza da questa carica

Campo elettrico di una distribuzione di cariche Supponiamo di avere una distribuzione di cariche assegnata Vogliamo di nuovo esplorare l’azione di questa distribuzione mediante una carica di prova q Per il principio di sovrapposizione la forza totale è la somma delle singole forze Queste forze sono proporzionali a q e quindi anche la forza totale lo è Se dividiamo questa forza per q otteniamo il campo elettrico generato dalla distribuzione di cariche assegnata Di nuovo il campo dipende solo dalla distribuzione di cariche e dalla posizione spaziale in cui si trova la carica esploratrice, ma non dal valore di questa carica

Principio di sovrapposizione per E La validità del principio per E segue dalla sua validità per le forze e dalla definizione di E in termini di forza elettrica

Campo elettrico e azione a distanza Concetto alternativo all’azione a distanza Invece di avere una carica che subisce “magicamente” l’azione di un’altra carica attraverso il vuoto, si suppone che ad ogni carica sia associato un campo elettrico definito in tutto lo spazio e che questo sia il tramite delle azioni elettriche tra cariche In questa visione non esiste lo spazio vuoto

Un momento di cautela La carica esploratrice dev’essere abbastanza piccola da non perturbare la distribuzione di cariche che si vuole studiare In linea di principio comunque piccola sia questa carica esistono i fenomeni dell’induzione e della polarizzazione per cui una perturbazione è inevitabile (limite del principio di sovrapposizione) Si suppone che sia sempre possibile scegliere una carica abbastanza piccola affinché questa perturbazione sia trascurabile Questo però contrasta con la quantizzazione della carica: non esiste carica minore di e

Principio di sovrapposizione Il fatto che una perturbazione tra cariche diverse sia comunque inevitabile costituisce una difficolta` per l’applicabilita` pratica del principio di sovrapposizione

Dimensioni e unità di misura di E Dalla definizione segue che E ha le dimensioni di una forza diviso una carica: L’unità di misura è quindi il newton diviso coulomb: u(E)=N/C

Campo di una carica puntiforme Si ricava dall’espressione della legge di Coulomb Questa espressione presume che la carica sia nell’origine delle coordinate Per generalità vediamo come si riscrive in caso la carica non sia nell’origine Questa forma ci è utile quando abbiamo più cariche

Campo di più cariche puntiformi Si ricava dal principio di sovrapposizione

Linee di campo Sono definite in ogni punto dello spazio esclusi quelli in cui sono presenti cariche puntiformi Sono linee nello spazio con la caratteristica di avere in ogni punto la tangente diretta come il campo Il verso è quello del campo (da carica positiva a carica negativa, oppure da carica positiva all’infinito, oppure dall’infinito a carica negativa) Si tracciano in numero proporzionale alla grandezza della carica: danno informazione anche sull’intensità del campo, poiche’ sono più fitte dove il campo è più intenso (lo dimostreremo quando studieremo la legge di Gauss) Incrocio di linee

Esercizi sul campo elettrico Linee di campo tra due conduttori dello stesso segno Limiti del principio di sovrapposizione: Campo totale di due sfere conduttrici cariche Campo totale di una carica puntiforme e di un piano conduttore neutro

Distribuzione continua di carica Come abbiamo visto la carica è quantizzata Ma molto spesso si ha a che fare con quantità di carica estremamente grandi rispetto all’unità elementare In tali casi si può ritenere con buona approssimazione che la carica vari con continuità Questa assunzione permette di applicare i metodi del calcolo differenziale e integrale

Distribuzione continua di carica uniforme generale Carica distribuita nello spazio Densità spaziale Carica distribuita su di una superficie Densità superficiale Carica distribuita lungo una linea Densità lineare Dimensioni della densità

Distribuzione continua di carica Viceversa si può trovare la carica: in uno spazio S su di una superficie S lungo una linea L

Campo elettrico di una distribuzione continua di carica Un volume infinitesimo dV intorno ad un punto A contiene una carica infinitesima dQ In un punto qualunque B dello spazio, tale carica dQ produce un campo elettrico infinitesimo dE a norma della legge di Coulomb A B R r dV R-r

Campo elettrico di una distribuzione continua di carica Il campo totale è la somma (integrale) di tutti questi campi infinitesimi La somma (integrale) va intesa in senso vettoriale Cioè abbiamo tre integrali (tripli), uno per ogni dimensione spaziale

Campo elettrico di una distribuzione continua di carica Idem per distribuzioni superficiali: abbiamo tre integrali (doppi) Idem per distribuzioni lineari: abbiamo tre integrali (semplici)

Esempi di calcolo di E Campo generato da un segmento uniformemente carico nel piano di simmetria. Limite per estensione infinita Campo generato da un disco uniformemente carico lungo l’asse di simmetria. Limite per estensione infinita

Moto di una carica in un campo elettrico uniforme e statico Equazione del moto L’accelerazione è una costante Siamo cioè in presenza di un moto uniformemente accelerato, e valgono tutte le leggi di Galileo relative al moto di un grave Se E non è parallelo ad uno degli assi del sistema di riferimento, esprimiamo l’equazione vettoriale in componenti cartesiane

Dipolo elettrico E’ l’insieme di due cariche di ugual modulo q e segno opposto, poste a distanza l tra loro Momento elettrico di dipolo: è un vettore dato dal prodotto (normale) della carica per il vettore distanza: Ove il vettor l si considera orientato dalla carica negativa a quella positiva -q +q

Due tipi di dipolo Il dipolo può essere indotto da un campo elettrico esterno che sposta le cariche positive e negative in un sistema altrimenti simmetrico Il dipolo ha necessariamente lo stesso verso del campo esterno Il dipolo può essere permanente: c’è una distribuzione asimmetrica stabile di carica Il dipolo può avere un’orientazione arbitraria

Forza di un campo E su un dipolo Forza totale Se il campo e` uniforme Ftot=0 sia per dipoli indotti che permanenti -q +q r+ r- E+ E- p -q +q r+ r- E+ E- p

Momento di un campo E su un dipolo Momento totale (rispetto al CM) Se il campo e` uniforme E` nullo per momenti indotti, perche’ le forze sono parallele ai vettori posizione delle cariche -q +q r+ r- E+ E- p -q +q r+ r- E+ E- p

Campo E non uniforme Se il campo non e` uniforme e il dipolo e` poco esteso nello spazio, E si puo` sviluppare in serie E similmente per il momento

Energia potenziale di un dipolo in un campo elettrico uniforme Per definizione è l’opposto del lavoro speso per passare dalla posizione iniziale A a quella finale B Introduciamo l’angolo q tra dipolo e campo e scegliamo come punto a potenziale zero q=p/2 Quindi