LE CONICHE L’ ellisse.

Slides:



Advertisements
Presentazioni simili

Advertisements

LE CONICHE Con sezione conica si intende una curva piana che sia luogo dei punti ottenibili intersecando la superficie di un cono circolare retto con un.
L’ IPERBOLE.
Funzioni di due variabili
DIDATTICA A DISTANZA “CARRELLATA” SULLE CONICHE CON ESERCITAZIONI
Coordinate cartesiane, polari sferiche e polari cilindriche
L’iperbole Teoria e laboratorio
Oggi le ... n ... comiche.
CIRCONFERENZA ELLISSE PARABOLA IPERBOLE Un po’ di storia
Prof. Valerio Muciaccia
ASCISSA SOPRA UNA RETTA
LE CONICHE CIRCONFERENZA ELLISSE PARABOLA IPERBOLE successiva.
Definizione e caratteristiche
Elementi di Matematica
Elementi di Matematica
Liceo scientifico “G.Aselli” classe III E anno scolastico
Rappresentazione delle CONICHE
LA PARABOLA PREREQUISITI DISTANZA TRA DUE PUNTI
LA PARABOLA.
I luoghi geometrici della CIRCONFERENZA e del CERCHIO.
La quantità di moto Data una particella di massa m che si muove con velocità v Si definisce quantità di moto la quantità: È un vettore Prodotto di uno.
Le macchine Matematiche
Il prodotto vettoriale
LE CONICHE                                       .
LE CONICHE.
Le leggi di KEPLERO: Indice
Spazi vettoriali astratti Somma e prodotto di n-ple Struttura di R n.
L’ellisse come luogo di punti
La Retta.
Curve & Coniche Francesca Serato 3^ ASo.
complementi di matematica
Fabrizio Gay – corso di fondamenti e applicazioni di geometria descrittiva aa CURVE e SUPERFICIE 1: Modelli matematico e categorie comuni (morfologia.
CONICHE 1. coniche come “luoghi solidi” 1.1 le coniche di Menecmo
Lo studio delle coniche nel tempo
F. Gay, Università IUAV di Venezia, Corso di Laurea in Scienze dellArchitettura - Modulo coordinato di rappresentazione 1 – aa Curve e superficie.
Circonferenza - Cerchio
Curve e superficie prima parte: coniche nel piano e nello spazio
LA PARABOLA.
Vettori Finche’ il moto si svolge in una sola dimensione – moto unidimensionale, moto rettilineo – non abbiamo bisogno di vettori La posizione e’ individuata.
Circonferenza - Cerchio
× × = 1 ESEMPI DI LUOGHI GEOMETRICI Luoghi geometrici
Luogo geometrico Definizione: un luogo geometrico di punti è l'insieme di tutti e soli i punti che soddisfano una certa proprietà p (detta caratteristica.
CONICHE 1. coniche come “luoghi solidi”
Cosa è un luogo?.
IL MOTO DEI PIANETI.
Vettori dello spazio bidimensionale (R 2)
La geometria analitica
Classi terze programmazione didattica Col terzo anni si abbandona l’ algebra, che rimane un prerequisito fondamentale, e si introduce, in modo più strutturato,
La retta Equazione (rette parallele agli assi, passanti per l’origine e generiche) Forma esplicita e implicita Condizione di parallelismo e perpendicolarità.
Geometria Analitica.
LE MACRO.
Vettori A B VETTORE è un segmento orientato caratterizzato da: C D
LA PARABOLA  Definizione: la parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso, detto fuoco, e da una retta fissa,
Possibili percorsi di sperimentazione
Equazione di un luogo geometrico nel piano cartesiano
IL CERCHIO A CURA DI RAGIP
GEOMETRIA PIANA: ASSIOMI E POSTULATI
Proff. Cornacchia - De Fino
Università degli Studi Roma Tre – Facoltà di Ingegneria – Corso di Cemento Armato precompresso A/A Richiami di geometria delle Aree Università.
La circonferenza e l’ellisse La sezione conica è l’intersezione di un piano con un cono. La sezione cambia a seconda dell’inclinazione del piano. Se il.
L’iperbole l'iperbole1IISS "Medi" - Galatone prof. Giuseppe Frassanito.
IISS "E. Medi" - Galatone Prof. Giuseppe Frassanito a.s. 2012/2013
CONICHE.
Geometria analitica Gli assi cartesiani Distanza di due punti
prof.Giuseppe Frassanito a.s
Luoghi di punti In geometria il termine
IL CERCHIO E LA CIRCONFERENZA.
La Circonferenza. LA CIRCONFERENZA Assegnato nel piano un punto C detto Centro, si chiama circonferenza la curva piana con i punti equidistanti da C.
Se il piano è perpendicolare (ortogonale) all’altezza del cono abbiamo la CIRCONFERENZA! LA CIRCONFERENZA COME LUOGO GEOMETRICO: la circonferenza.
Transcript della presentazione:

LE CONICHE L’ ellisse

Ellisse generica L'ellisse con evidenziate alcune sue proprietà, si noti anche che la distanza CF2 è uguale ad a, con tutte le relative simmetrie, quindi se la distanza dal centro al fuoco è c, b2 + c2 = a2 In geometria, un'ellisse è una figura che assomiglia ad un cerchio allungato in una direzione. Questa figura è un esempio di sezione conica e può essere definita come il luogo dei punti, in un piano, la cui somma delle distanze da due punti fissi dati (detti fuochi) è costante, cioè sempre uguale. Secondo le leggi di Keplero, l'orbita di un pianeta è un'ellisse, con il Sole in uno dei due fuochi. Se i due fuochi coincidono, si ha una circonferenza, che può considerarsi quindi un caso particolare di ellisse (ad eccentricità nulla). L'eccentricità di un'ellisse è compresa tra zero e uno. Il segmento che passa dai due fuochi è detto asse maggiore ed è anche il più lungo segmento contenuto nell'ellisse. Il segmento passante per il centro (a metà tra i fuochi), ortogonale all'asse maggiore, è l'asse minore. Il semiasse maggiore è una delle metà dell'asse maggiore; parte dal centro, passa attraverso un fuoco e va fino all'ellisse. Analogamente il semiasse minore è metà dell'asse minore. I due assi sono l'equivalente per l'ellisse del diametro, mentre i due semiassi sono l'equivalente del raggio. La dimensione e la forma di un'ellisse sono determinate da due costanti, dette convenzionalmente a e b. La costante a è la lunghezza del semiasse maggiore; la costante b è la lunghezza del semiasse minore. L'equazione dell'ellisse si trova eguagliando la somma delle distanze fra i fuochi e un punto generico P(x;y) e il doppio del semiasse maggiore. PF1 + PF2 = 2a Per trovare l'equazione canonica o normale dell'ellisse (cioè con centro nell'origine e i fuochi nell'asse delle x) sostituiamo y1 = 0, y2 = 0, x1 = -c, x2 = c, c = e con le opportune manipolazioni si ottiene un'ellisse centrato nell'origine di un sistema di assi cartesiani x-y con l'asse maggiore posto lungo l'asse delle ascisse è definito dall'equazione: (x^2/a^2)+(y^2/b^2)=1 La stessa ellisse è rappresentata anche dall'equazione parametrica: x=a*cos t y=b*sin t 0<=t<2*pigreco che fa uso delle funzioni trigonometriche seno e coseno. La forma di un'ellisse è solitamente espressa da un numero detto eccentricità dell'ellisse, convenzionalmente denotata da e (da non confondere con la costante matematica e). L'eccentricità è legata ad a e b dall'espressione e = c / a L'eccentricità è un numero positivo compreso tra 0 e 1, (se è pari a 0, l'ellisse è degenerata in una circonferenza, se è pari a 1 è degenerata in un segmento di lunghezza 2a). Maggiore è l'eccentricità, maggiore è il rapporto tra a e b, quindi l'ellisse è più allungata. La distanza tra i due fuochi è 2c. Il semilato retto di un'ellisse, solitamente denotata dalla lettera l, è la distanza tra il fuoco dell'ellisse e l'ellisse stessa misurata lungo una linea perpendicolare all'asse maggiore. È legata ad a e b dalla formula al = b2. In coordinate polari, un'ellisse con un fuoco nell'origine e l'altro lungo la parte negativa dell'asse delle ascisse è data dall'equazione: r(1 + ecosθ) = l Un'ellisse può essere pensata anche come la proiezione di una circonferenza: una circonferenza su un piano con angolo φ rispetto al piano orizzontale proiettata verticalmente su un piano orizzontale da un'ellisse di eccentricità sin φ, supponendo che φ sia diverso da 90°. L'area racchiusa da un'ellisse è πab. La circonferenza di un'ellisse è 4aE(e), dove la funzione E è l'integrale ellittico del secondo tipo.

Equazione generale di un’ ellisse Per trovare l'equazione di un'ellisse avente i fuochi F1 (xF1 ;yF1) e F2 (xF2 ;yF2) con il semiasse maggiore a l'equazione è: Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 I parametri A, B, C, D, E e F sono: A = 16a2 − 4(xF1 − xF2)2 B = − 8(xF1 − xF2)(yF1 − yF2) C = 16a2 − 4(yF1 − yF2)2

lunghezza La lunghezza dell'ellisse è c = 4aE(e), dove la funzione E è un integrale ellittico completo di seconda specie. Lo sviluppo in serie è: Una buona approssimazione è quella di Ramanujan: che può anche essere scritta come: Più in generale, la lunghezza dell'arco di una porzione di circonferenza, come funzione dell'angolo sotteso, è data da un integrale ellittico incompleto. La funzione inversa, l'angolo sotteso come funzione della lunghezza dell'arco, è data da una funzione ellittica.

Proprietà tangenziale Una tangente all'ellisse in un punto P forma angoli uguali con le rette che congiungono P con i due fuochi. Per dimostrare questa proprietà si può usare il teorema di Erone che stabilisce che Data una retta r e due punti esterni Q ed R, il punto P della retta r che minimizza la somma PQ+PR è quel punto tale che i segmenti PQ e PR formano angoli uguali con la retta r. Consideriamo quindi un'ellisse di fuochi Q ed R. Questa sarà il luogo dei punti P tale che la somma delle distanze PQ+PR sarà uguale ad un valore prefissato d. Consideriamo una retta passante per un punto P dell'ellisse tale che forma angoli uguali con i segmenti PQ e PR. Per il teorema di Erone il punto P è il punto della retta che rende minima la somma PQ+PR, questo implica che la retta deve essere tangente all'ellisse, infatti se non fosse tangente la retta entrerebbe nell'interno dell'ellisse, quindi ci sarebbe un punto P' della retta per cui P'Q+P'R<d e non sarebbe più vero che il minimo è realizzato in P. Come conseguenza di questa proprietà si ha che in un biliardo a forma di ellisse una palla lanciata da uno dei due fuochi verrà riflessa sul bordo in modo tale da passare necessariamente per il secondo e in uno specchio concavo a forma di ellisse tutti i raggi luminosi che partono da uno dei due fuochi arrivano necessariamente all'altro in tutte le direzioni e dopo alcuni rimbalzi sulle pareti la palla tenderà a portarsi sull'asse maggiore rimbalzando tra i punti A e B. Questo spiega perché i fuochi dell'ellisse si chiamano appunto "fuochi". Analogamente in una camera a forma di ellisse le onde sonore che partono da uno dei due fuochi arrivano all'altro lungo tutte le direzioni e poiché la distanza percorsa nel tragitto da un fuoco all'altro è sempre la stessa le onde arriveranno tutte sincronizzate, in questo modo due persone poste nei due fuochi potrebbero comunicare facilmente anche da lunghe distanze, mentre altre persone, anche notevolmente più vicine a chi parla non sentirebbero niente. Questo è il principio sul quale sono state costruite alcune sale.

Un esempio di parabola, detto parabola canonica, in quanto il vertice della conica corrisponde all'origine degli assi cartesiani. In matematica, la parabola (dal greco: παραβολή) è una particolare figura contenuta nel piano. Si tratta di una particolare sezione conica, come l'ellisse e l'iperbole. Può essere definita come il luogo dei punti equidistanti da una retta (detta direttrice) e da un punto (detto fuoco) non appartenente alla retta. La parabola è un concetto importante in matematica ed ha numerose applicazioni in fisica ed in ingegneria

In geometria analitica, il piano è dotato di coordinate cartesiane ortogonali, e una parabola può essere descritta come luogo di punti che soddisfa un'equazione di un certo tipo. Una parabola è l'insieme dei punti (x,y) del piano cartesiano che soddisfano una equazione quadratica del tipo dove: Equazioni quadratiche con condizioni diverse da h2 = ab descrivono altre coniche, quali ad esempio l'ellisse e l'iperbole.

Equazioni quadratiche con condizioni diverse da h2 = ab descrivono altre coniche, quali ad esempio l'ellisse e l'iperbole. Operando una rotazione che trasforma l'asse della parabola in una retta parallela all'asse delle ordinate si può ottenere una espressione più semplice, del tipo: con . Se invece la rotazione trasforma l'asse in una retta parallela all'asse delle ascisse l'equazione diventa: