La rete di distribuzione del futuro: Smart Grids Roma, 10/06/2015
Enel Distribuzione 2014 La Società Dimensione del Business La Rete 16.890 Personale: La Società Clienti: Clienti Passivi connessi (Y2014) Generazione Distribuita connessa (Y2014): DGs connessi al 2014 Market share - Clienti Dimensione del Business 31.6 M 2.3 GW 0,6 GW (52.000) 592.000 85% 1.130.000 km di linee: MT 350.000 km; BT 780.000 km 2.100 cabine AT/MT, tutte controllate da remoto 430.000 cabine MT/BT, 30% controllate da remoto 28 Centri di Controllo La Rete
Enel Distribuzione sul territorio Macro Area Territoriale Nord Ovest Macro Area Territoriale Nord Est Macro Area Territoriale Nord Centro Macro Area Territoriale Nord Sud 11 Distribuzioni Territoriali Rete Piemonte e Liguria Lombardia Triveneto Emilia Romagna e Marche Toscana e Umbria Lazio, Abruzzo e Molise Sardegna Campania Puglia e Basilicata Calabria Sicilia
Traditional Power Network
Distributed Generation Necessary evolving of power lines Cost reduction of conversion and generation technologies Feed in Tariff for green energy production Spread of DGs randomly located on the grid with randomly injection of power Has led -Spread of distributed sources randomly located on the grid --- The presence of DGS in electrical grids increases the complexity of the regulation process because the injection of power from these sources, which is intrinsically random for generators based on renewable sources, can alter the voltage profiles on the network buses
Distributed Generation Rete Italia 2014 NORD-OVEST 137.865 connessioni 5.551 MW 26,2 NORD-EST 194.341 connessioni 6.483 MW Non-RES 2,2 Hydro 1,1 Bio&Waste 2,5 16,5 Solare CENTRO 149.850 connessioni 6.178 MW SUD 109.911 connessioni 8.028 MW 3,9 Eolico 591.967 connessioni 26.240 MW Potenza connessa (GW) La rete di distribuzione del futuro: Smart Grids
Why Smart Grids are requested “The Smart Grid will be a customer-centered, interactive, reliable, flexible, optimal, economical, economically responsive and, ultimately, a sustainable and environmentally responsible electrical power generation and distribution system. Electric utilities must play a key role in its development.” Smart Grid Technology Innovation Group Report, Tokyo Summit 2010
Towards intelligent networks
Implementing Smart Grids Advantages Improving Power Quality Increase efficiency of power systems Reducing pollution Reducing system losses Supporting large-scale penetration of small-scale DGS Reducing primary energy consumption Creation of green jobs Provide to customers high quality electricity Especially air and therefore
Critical issues in the electrical network management system Implementing Smart Grids Critical items Network devices potentially critical Feeder circuit breakers Protection devices Conductors On Load Tap Changer (OLTC) Critical issues in the electrical network management system Voltage regulation Harmonic pollution Grid disconnection Islanding Because the trasnformer regulates the voltage level of the network which changes continously in DG.
Voltage regulation Optimal voltage regulation is one of the main issues to address in a Smart Grid context Consideriamo il semplice circuito che rappresenta una linea MV a cui sono sottesi…. Con la rete attuale non possiamo controllare questo fenomeno. In più c’è il problema del bidirectional flow e la totale inversione del flusso.
Traditional Voltage Regulation On Load Tap Changing Transformer Traditional Voltage Regulator Strategies applied in MV distribution systems could be not able to manage high penetration of DG plants Not able to manage active feeder Fail when the HV/MV power flow partially or completely reverses Nel caso normale (senza produttori), all’aumento di corrente (aumento del carico), diminuisce la tensione ed il variatore va ad aumentare il livello della tensione di sbarra. I produttori generano un aumento di corrente, e se c’è inversione di flusso, il modulo della corrente visto dal variatore (vede solo il modulo) aumenta, ma in realtà non c’è carico e quindi già si verifica di per sé un aumento di tensione sulla rete, con aggravio di aumento di tensione da parte del trasformatore. La soluzione adottata al momento è di bloccare il valore della tensione di sbarra ad un valore fisso.
Energy Storage System One possible solution Renewable sources integration Peak load leveling Power quality improvement Islanding operation
Energy Storage System What kind of storage [MW] MWh Pumping Hydro Short-Term Response Energy Storage (Seconds) Long-Term Response Energy Storage (Hours) Real Long-Term Response Energy Storage (Days) Seconds Hours Days MWh [MW] [Time] Pumping Hydro Electrochemical Compressed air Super-capacitor SMES Fuel cell
Simulation A power flow problem 1 HV/MV Transformer (25MVA) 12 MV buses (2 dedicated to DGs) 366 nodes PVGIS model Annual load curve PV nominal power installed 23MW MatPower environment
Simulation results January Power (MW) Time (h) PV production Power flow Power absorption
Simulation results February Power (MW) Time (h) PV production Power flow Time (h) Power absorption
Simulation results April Power (MW) Time (h) PV production Power flow Power absorption
Simulation results August Power (MW) Time (h) PV production Power flow Power absorption
Islanding “A condition in which a portion of the utility system that contains both loads and distributed resources remains energized while isolated from the remainder of the utility system” . (IEEE Std. 100-2000 )
Power balance between source and load Why islanding occurs Line disconnection + Power balance between source and load High probability that Islanding occurs In this case normal protections does not stop the DG to energized the Point of Common Coupling (PCC) IEEE Std. 929-2000
Islanding Critical items Safety issues for the line workers Distributed inverters and generally customers devices could be damaged Responsibility of DSO towards customers
How Islanding occurs MV/LV substation Feeder circuit breaker: on Feeder circuit breaker: off micro-grids
Implemented Smart Grids technologies EV charging infrastructure Mgt: Monitoring and control of charging process Interoperable and Multivendor EV charging Vehicle-to-Grid and VAS enabled Load Shaping, load flexibility Smart Metering Infrastructure: Remote meter reading and mgt LV monitoring and Outages Mgt Fraud detection and balancing Reliable billing Fast switching Data validation and settlement Active Demand and VAS enabled (Smart Info) DER Integration: DER monitoring Forecasting Information Exchange with the TSO DER control Voltage regulation Local Dispatching Storage Network Management: Remote Control and Automation Monitoring in real time Planning and Maintenance Information Exchange with the TSO Information Exchange with PA
1.600 Infrastrutture di Ricarica in Italia, 2.500 in Europa E-Mobility Main projects in Italy Progetto Regione Emilia-Romagna Bologna, Reggio Emilia, Rimini, Piacenza, Ferrara, Ravenna, Forlì, Cesena,Parma,Maranello,Formigine,Modena,Imola Interoperabilità con Distributori Hera ed Iren E-Mobility Italy Roma, Milano, Pisa Primo progetto in Italia. Partnership Enel-Mercedes Progetto Umbria 13 città d’arte (Assisi,Orvieto,Perugia. Spoleto…) Interoperabilità con ASM Terni Siena Fornitura 43 infrastrutture per rete pubblica Accordo Roma Capitale-Enel-Acea Roma Interoperabilità con Acea Smart City Bari, Genova, L’Aquila Mobilità Elettrica per le Smart Cities Progetti Europei Progetto Hinterland di Milano Assago, Rho, San Donato Milanese, Segrate, Sesto San Giovanni, Interoperabilità con Disiributore A2A Enel – Poste Italiane Fornitura di oltre 400 Infrastrutture di ricarica Consegna della posta a “Zero emissioni” Matera – Capitale Europea della Cultura Protocollo per mobilità convergente con Brindisi (Aeroporto) e Lecce Protocollo Ikea Infrastrutture di ricarica in tutti gli store italiani (Rete Pubblica) Protocollo Enel Eni Infrastruttura Fast Recharge presso Eni Station su superstrade e autostrade. Prima installazione Pomezia 1.600 Infrastrutture di Ricarica in Italia, 2.500 in Europa
Enel Smart grids Main projects in Italy Durata : 2011-2015 L’AQUILA SMART CITY Durata: 2014 - 2016 Durata : maggio – ottobre 2015 Durata : 2012-2015 Proposal under evaluation PIANO OPERATIVO REGIONALE POR CAMPANIA Durata : 2014-2015 Durata : 2014-2018 PUGLIA ACTIVE NETWORK PIANO OPERATIVO INTERREGIONALE Durata : 2009-2015 PROGETTO ISERNIA Durata : 2011-2015
Enel Distribuzione for EXPO 2015 Smart Grid Innovative control and fault detection system for management and operation of the electricity distribution network Storage System and integration of renewable energy sources Enel electric mobility infrastructure (with Pole Charging Stations) to recharge the Expo Electrical Vehicles Operation Center to monitor and control all the electrical parameters 8.500 lighting points LED technologies with high efficiency
Active Energy Management The Site May 1st 2015 – October 31 2015 1,1 Mln m2 between Milano and Rho 75 MW required 160 temporary buildings 1 office building (7 floors) + Performance Center 1 representative building (3500 m2 h 24 m height) > 20.000 m2 of Greenhouse 340 flats + 14 service areas 20 Mln visitors 30 electric people mover (range 100 km) 50 hybrid bus (range > 100 km) 10 electrical cars 50 electrical freight transport Show case of worldwide and innovative technologies Media Center
EXPO 215 Feeding the planet energy for life