Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7.

Slides:



Advertisements
Presentazioni simili
Come organizzare i dati per un'analisi statistica al computer?
Advertisements

Tecniche di analisi dei dati e impostazione dellattività sperimentale Relazioni tra variabili: Correlazione e Regressione.
Primi passi con Easy Reg 1
Analisi Bivariata e Test Statistici
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Analisi Bivariata Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°4.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n° 8.
Analisi fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 10.
Regressione logistica
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8
Analisi Bivariata & Esercizi Analisi Univariata
Test Statistici Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°5.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11.
redditività var. continua classi di redditività ( < 0 ; >= 0)
Analisi Bivariata & Esercizi Analisi Univariata Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°4.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8.
Analisi Bivariata e Test Statistici
Metodi Quantitativi per Economia, Finanza e Management Lezione n°5 Test statistici: il test Chi-Quadro, il test F e il test t.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
Test di associazione - Analisi fattoriale
Regressione lineare - Esercizi
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n° 8.
Questionario - Analisi Univariata e Bivariata
Metodi Quantitativi per Economia, Finanza e Management Lezione n°10.
Ipotesi e proprietà dello stimatore Ordinary Least Squares (OLS)
STATISTICA 6.0: REGRESSIONE LINEARE
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA: test sui parametri e scelta del modello (parte 3) Per effettuare test di qualsiasi natura è necessaria.
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA (parte 1)
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9.
Corso di biomatematica lezione 7-2: Test di significatività
STATISTICA a.a METODO DEI MINIMI QUADRATI REGRESSIONE
Validazione METEO 2005 Regione Friuli. Stazioni con misure assimilate da LAPS (in ROSSO) Stazioni indipendenti (fornite da ARPA FVG) usate per la validazione.
Modello di regressione lineare semplice
Dall’analisi Fattoriale alla regressione lineare
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°6.
Regressione logistica
Esercizi riepilogativi Analisi Univariata e Bivariata Analisi Fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°5.
Esercizio Regressione DATI Per un campione casuale di 82 clienti di un'insegna della GDO, sono disponibili le seguenti variabili, riferite ad un mese di.
Distribuzioni di Frequenza & Esercizi Distribuzioni di Frequenza & Esercizi Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°2.
Analisi Bivariata: Test Statistici
Esercizi Analisi Fattoriale + Regressione lineare Regressione logistica Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°13.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°11 Regressione lineare multipla: Analisi di influenza. Case Study.
Analisi Fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
Dall’Analisi Fattoriale alla Regressione Lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n° 11.
Esercizi riepilogativi Analisi Univariata e Bivariata
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9 Regressione lineare multipla: la stima del modello e la sua valutazione, metodi automatici.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Analisi Bivariata Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°4.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°13 Regressione Logistica: La stima e l’interpretazione del del modello.
Regressione logistica
Lezione B.10 Regressione e inferenza: il modello lineare
Metodi Quantitativi per Economia, Finanza e Management Lezione n°10 Regressione lineare multipla: la valutazione del modello, metodi automatici di selezione.
Analisi Multivariata dei Dati
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9.
Analisi fattoriale Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7.
Analisi discriminante lineare - contesto
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7.
Regressione lineare - Esercizi
Regressione logistica Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Regressione lineare - Esercizi Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°9.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
Esercizio Regressione DATI Per un campione casuale di 82 clienti di un'insegna della GDO, sono disponibili le seguenti variabili, riferite ad un mese di.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°13.
Regressione semplice e multipla in forma matriciale Metodo dei minimi quadrati Stima di beta Regressione semplice Regressione multipla con 2 predittori.
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE SEMPLICE
Regressione: approccio matriciale Esempio: Su 25 unità sono stati rilevati i seguenti caratteri Y: libbre di vapore utilizzate in un mese X 1: temperatura.
Transcript della presentazione:

Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7

Le date per la consegna del lavoro di gruppo sono inderogabilmente fissate: –venerdì 11 gennaio 2013 –lunedì 21 gennaio 2013 La consegna va effettuata in Segreteria (4° piano) entro le ore 12 alla Sig.ra Enrica Luezza Il lavoro di gruppo, previa consegna nelle date stabilite, avrà validità di un anno accademico. Consegna Lavoro di gruppo

Regressione lineare - Modello Modello di regressione lineare si vuole modellare una relazione di tipo lineare tra una variabile dipendente e un insieme di regressori che si ritiene influenzino la variabile dipendente si vuole approssimare la nuvola dei punti osservati (ogni punto rappresenta un intervistato) con una retta tra tutte le infinite rette possibili si stima la retta che fornisce linterpolazione migliore stimando i coefficienti associati ai regressori che entrano nel modello (tutto ciò con il vincolo di minimizzare gli errori di approssimazione).

proc reg data=dataset; model variabile_dipendente= regressore_1... regressore_p /option(s); run; quit; Modello di regressione lineare – selezione automatica dei regressori (a partire da p regressori) PROC REG – Sintassi OPTIONS: stb calcola i coefficienti standardizzati

PROC REG – Esempio Variabile dipendente (soddisfazione globale) e 9 regressori Nome variabileDescrizione variabile AltriOperatori_2Livello di soddisfazione relativo ai costi verso altri operatori assistenza_2Livello di soddisfazione relativo al servizio di assistenza Autoricarica_2Livello di soddisfazione relativo alla possibilità di autoricarica CambioTariffa_2Livello di soddisfazione relativo alla facilità di cambiamento della tariffa ChiamateTuoOperatore_2 Livello di soddisfazione relativo alla possibilità di effettuare chiamate a costi inferiori verso numeri dello stesso operatore ComodatoUso_2 Livello di soddisfazione relativo alla possibilità di rivecere un cellulare in comodato d'uso CostoMMS_2Livello di soddisfazione relativo al costo degli MMS Promozioni_2 Livello di soddisfazione relativo alla possibilità di attivare promozioni sulle tariffe vsPochiNumeri_2 Livello di soddisfazione relativo alle agevolazioni verso uno o più numeri di telefono soddisfazione_globaleLivello di soddisfazione globale relativo al telefono cellulare

PROC REG – Esempio proc reg data= corso.telefonia ; model soddisfazione_globale = CambioTariffa_2 ComodatoUso_2 AltriOperatori_2 assistenza_2 ChiamateTuoOperatore_2 Promozioni_2 Autoricarica_2 CostoMMS_2 vsPochiNumeri_2 / stb ; run; quit; Modello di regressione lineare variabile dipendente= SODDISFAZIONE_GLOBALE, regressori= 9 variabili di soddisfazione (livello di soddisfazione relativo a tariffe, promozioni, ecc.) REGRESSORI opzione per ottenere i coefficienti standardizzati VARIABILE DIPENDENTE

Regressione lineare – Valutazione modello Valutazione della bontà del modello (output della PROC REG) Test t per valutare la significatività dei singoli coefficienti (se p-value del test piccolo allora si rifiuta lipotesi di coefficiente nullo il regressore corrispondente è rilevante per la spiegazione della variabile dipendente) Test F per valutare la significatività congiunta dei coefficienti (se p-value piccolo rifiuto lipotesi che i coefficienti siano tutti nulli il modello ha buona capacità esplicativa) Coefficiente di determinazione R-quadro per valutare la capacità esplicativa del modello capacità di rappresentare la relazione tra la variabile dipendente e i regressori (varia tra 0 e 1, quanto più si avvicina ad 1 tanto migliore è il modello)

PROC REG – Output attenzione!! per stimare il modello SAS non utilizza i record con valori mancanti Il modello è abbastanza buono, spiega il 60% della variabilità della variabile dipendente. Quanto più R-Square si avvicina ad 1 tanto migliore è il modello! Number of Observations Read236 Number of Observations Used235 Number of Observations with Missing Values 1 Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var

PROC REG – Output il modello ha buona capacità esplicativa, il p-value associato al test F è < 0.05 (livello di significatività) Analysis of Variance SourceDFSum of Squares Mean Square F ValuePr > F Model <.0001 Error Corrected Total

PROC REG – Output se il p-value associato al test t è < 0.05 (livello di significatività fissato a priori) si rifiuta lipotesi H0 di coefficiente nullo, quindi il regressore corrispondente è rilevante per la spiegazione della variabile dipendente; Parameter Estimates VariableLabelDFParameter Estimate Standard Error t ValuePr > |t|Standardized Estimate Intercept < CambioTariffa_ ComodatoUso_ AltriOperatori_ assistenza_ ChiamateTuoOper atore_ < Promozioni_ < Autoricarica_ CostoMMS_ vsPochiNumeri_

PROC REG – Output se il p-value associato al test t è >0.05 (livello di significatività fissato a priori) si accetta lipotesi H0 di coefficiente nullo, quindi il regressore corrispondente NON è rilevante per la spiegazione della variabile dipendente; Parameter Estimates VariableLabelDFParameter Estimate Standard Error t ValuePr > |t|Standardized Estimate Intercept < CambioTariffa_ ComodatoUso_ AltriOperatori_ assistenza_ ChiamateTuoOper atore_ < Promozioni_ < Autoricarica_ CostoMMS_ vsPochiNumeri_

Regressione lineare – Interpretazione coefficienti Il coefficiente esprime la variazione che subisce la variabile dipendente Y in seguito a una variazione unitaria della variabile esplicativa, mentre il valore delle altre variabili esplicative rimane costante: ATTENZIONE!! i valori dei coefficienti dipendono dallunità di misura delle variabili quindi la loro entità non fornisce informazione sullimportanza dei diversi regressori rispetto alla variabile Y. in genere si considerano i coefficienti standardizzati (opzione STB della PROC REG) che non sono influenzati dallunità di misura delle variabili

PROC REG – Output se la variabile CambioTariffa_2 aumenta di una unità allora la soddisfazione globale aumenta del 19% se la variabile CambioTariffa_2 diminuisce di una unità allora la soddisfazione globale diminuisce del 19% N.B.:attenzione al segno del coefficiente!! Parameter Estimates VariableLabelDFParameter Estimate Standard Error t ValuePr > |t|Standardized Estimate Intercept < CambioTariffa_ ComodatoUso_ AltriOperatori_ assistenza_ ChiamateTuoOper atore_ < Promozioni_ < Autoricarica_ CostoMMS_ vsPochiNumeri_

Importanza dei regressori Parameter Estimates VariableDFParameterStandardt ValuePr > |t|Standardized EstimateErrorEstimate Intercept < regressore < regressore < regressore < regressore < I coefficienti standardizzati sono utili per valutare limportanza relativa dei regressori. Possiamo ordinare i regressori in base allimportanza che hanno nello spiegare la variabile dipendente. Il regressore con valore assoluto del coefficiente standardizzato più alto è il più importante. Nellesempio il regressore 3 è il più importante, poi il regressore 4, l1 e infine il 2.

Regressione lineare – Variabili qualitative nominali Considerazioni da fare prima di stimare il modello Non si possono inserire variabili qualitative nominali tra i regressori Per considerare questo tipo di variabili allinterno del modello bisogna costruire delle variabili dummy (dicotomiche (0-1)) che identificano le modalità della variabile nominale originaria; Le variabili dummy saranno utilizzate come regressori.

Costruzione variabili dummy - esempio Es. Si vuole considerare tra i regressori la variabile qualitativa nominale Area che identifica larea di residenza degli intervistati La variabile Area assume tre modalità (nord-centro-sud) si costruiscono due variabili dummy

Costruzione variabili dummy - esempio Le variabili dummy da costruire sono due (la terza sarebbe ridondante può essere ottenuta come combinazione delle altre due) Area_nord vale 1 se lintervistato è residente al nord e 0 in tutti gli altri casi Area_centro vale 1 se lintervistato è residente al centro e 0 in tutti gli altri casi

Costruzione variabili dummy - esempio VARIABILE ORIGINARIA (non entra nel modello) VARIABILI DUMMY (entrano nel modello)

Costruzione variabili dummy - esempio Nella PROC REG si inseriscono le due variabili dummy (ma non la variabile originaria!) nella lista dei regressori i relativi coefficienti rappresentano leffetto della singola modalità (nord/centro) della variabile Area. proc reg data= … ; model Y= X1 X2 … area_nord area_centro /stb; run; quit;

Regressione lineare – Selezione regressori Nella scelta dei regressori bisogna cercare di mediare tra due esigenze: 1)maggior numero di variabili per migliorare il fit 2)parsimonia per rendere il modello più robusto e interpretabile Scelta dei regressori che entrano nel modello metodo di selezione automatica (PROC REG con opzione STEPWISE)

proc reg data=dataset; model variabile_dipendente= regressore_1... regressore_p /option(s); run; Modello di regressione lineare PROC REG – Sintassi OPTIONS: STB calcola i coefficienti standardizzati selection=stepwise applica la procedura stepwise per la selezione dei regressori slentry=… livello di significatività richiesto per il test F parziale affinchè il singolo regressore possa entrare nel modello slstay=… livello di significatività richiesto per il test F parziale affinchè il singolo regressore non sia rimosso dal modello

Metodi di selezione automatica - Stepwise - Procedura sequenziale che valuta lingresso/uscita dal modello dei singoli regressori (in base a indicatori legati allR-quadro) Step 0 si considerano tutti i potenziali regressori Step 1 entra il primo regressore. Ossia, viene stimato un modello contenente un unico regressore tra quelli proposti (viene scelto il regressore che spiega meglio la variabilità della variabile dipendente) Step 2 si valutano tutti i possibili modelli contenenti il regressore individuato allo step 1 e uno dei rimanenti regressori, e si tiene il modello con il fit migliore (ossia entra il regressore che dà il contributo maggiore alla spiegazione della variabilità)

Metodi di selezione automatica - Stepwise - Step 3 e seguenti si valuta luscita di ognuno dei regressori presenti (in base alla minor perdita di capacità esplicativa del modello) e lingresso di un nuovo regressore (in base al maggior incremento nella capacità esplicativa del modello). Tra tutti i regressori rimanenti verrà scelto quello che dà il contributo maggiore alla spiegazione della variabilità della variabile dipendente Ultimo step la procedura si arresta quando nessun regressore rimanente può essere inserito in base al livello di significatività scelto (slentry) e nessun regressore incluso può essere eliminato in base al livello di significatività scelto (slstay). In pratica quando non si riesce in alcun modo ad aumentare la capacità esplicativa del modello

PROC REG – Riepilogo Per stimare un modello di regressione lineare 1.individuare la variabile dipendente (=il fenomeno da analizzare) 2.individuare linsieme dei potenziali regressori (eventualmente tutte le variabili nel dataset) 3.se tra i regressori sono presenti variabili qualitative nominali costruire variabili dummy 4.far girare la PROC REG con opzione STEPWISE per la selezione automatica dei regressori 5.verificare la bontà del modello (R-quadro, R-quadro corretto e TEST F)

PROC REG – Riepilogo 6.valutare la significatività dei singoli coefficienti (test t) 7.valutare limportanza relativa dei regressori (coeff standardizzati) 8.controllare il segno dei coefficienti 9.interpretare i coefficienti

Esercizio Variabile dipendente e 21 variabili di soddisfazione

PROC REG – Esempio proc reg data= corso.telefonia; model soddisfazione_globale= CambioTariffa_2 ChiarezzaTariffe_2 … /stb selection=stepwise slentry=0.05 slstay=0.05; run; quit; Modello di regressione lineare variabile dipendente= SODDISFAZIONE_GLOBALE, regressori= 21 variabili di soddisfazione (livello di soddisfazione relativo a tariffe, promozioni, ecc.) REGRESSORI opzione per ottenere i coefficienti standardizzati VARIABILE DIPENDENTE criterio di selezione automatica dei regressori soglia di significatività scelta per il test F affinchè un regressore possa entrare nel modello (valore di default=0.15) soglia di significatività scelta per il test F affinchè un regressore non sia rimosso dal modello (valore di default=0.15)

PROC REG – Output tutti i regressori sono rilevanti per la spiegazione della variabile dipendente; il p-value associato al test t è < 0.05 (livello di significatività) Il metodo Stepwise seleziona 6 regressori delle 21 variabili di soddisfazione