UNIVERSITA’ DEGLI STUDI DI ROMA “TOR VERGATA” Corso di laurea in ingegneria dei modelli e dei sistemi ALGORITMI PER IL CALCOLO DEL PREZZO E DELLA COPERTURA DI OPZIONI EUROPEE Relatore: Prof. Giovanni Bellettini Studente: Claudio Palandra - Claudio Palandra -
Ringraziamenti Ringrazio tutti i presenti per la partecipazione. Claudio Palandra - Claudio Palandra -
Sommario Introduzione: proprietà del mercato ed opzioni; Modello Cox-Ross-Rubinstein; Programmazione in C++. - Claudio Palandra -
TASSI D’INTERESSE Composto: Semplice: Composto tempo continuo: Definiamo r il tasso di interesse; il capitale iniziale cresce dopo n periodi di ricapitalizzazione nei seguenti modi: Semplice: Composto: Composto tempo continuo: Se nell’anno ho k periodi, su n anni ottengo la seguente ricapitalizzazione - Claudio Palandra -
ARBITRAGGIO È definito arbitraggio una operazione finanziaria che non necessita di capitale iniziale; non può dar luogo mai a perdite, anzi ha probabilità strettamente positiva di guadagno. - Claudio Palandra -
ARBITRAGGIO Un esempio: sul mercato dei cambi si registra nello stesso istante i seguenti tassi Euro/USD 1.267 Euro/Yen 133.85 USD/Yen 106.75 1 USD 106.75 Yen 106.75 Yen 0.798 Euro 1.011 USD Abbiamo ottenuto un guadagno di 1.1 centesimi di USD - Claudio Palandra -
PROPRIETA’ DEL MERCATO FINANZIARIO Studieremo un mercato finanziario con proprietà quasi sempre non riscontrabili; senza discostarci troppo dalla realtà avremo però grandi facilitazioni dal punto di vista dello studio matematico. Proprietà: Esiste di un tipo di investimento non rischioso detto bond, a tasso r costante; i costi di transazione(cambio valuta, acquisto azioni...) sono nulli; è ammessa la vendita allo scoperto; sono permesse operazioni che riguardano frazioni di bene. - Claudio Palandra -
Derivati un prodotto derivato è un titolo il cui valore è basato sul valore di mercato di altri beni; nati inizialmente con lo scopo di coprire il rischio; tuttavia si prestano bene a scopi speculativi; vasta diffusione sui mercati; i principali derivati sono futures e opzioni. - Claudio Palandra -
Opzioni Particolare tipo di derivato che conferisce al possessore la possibilità ma non l’obbligo di comprare o vendere il bene(sottostante) sul quale l’opzione è sottoscritta, ad un determinato prezzo prefissato fino a una particolare data prefissata(maturità). Americane: è possibile esercitare in qualsiasi momento Europee: è possibile esercitare solo a maturità. - Claudio Palandra -
Nomenclatura la data prefissata T è detta maturità; il prezzo prefissato K è detto prezzo di esercizio o strike; il bene si chiama sottostante; Si distingue inoltre Call/put rispettivamente opzioni a comprare o vendere un bene; Europee esercitabili solo a maturità; Americane esercitabili in qualsiasi istante prima di maturità; - Claudio Palandra -
Payoff È una quantità che caratterizza l’opzione; rappresenta il guadagno del detentore del contratto; dal payoff possiamo dedurre qualsiasi tipo di opzione (asiatica, digital, barriera...) Grafico del payoff di una put Grafico del payoff di una call - Claudio Palandra -
Opzioni: Possiamo domandarci: Cos’è il premio di un’opzione? Cos’è una strategia replicante? - Claudio Palandra -
Modello C.R.R. Sul mercato sono presenti solo 2 titoli: uno non rischioso e uno rischioso; il prezzo del sottostante tra 2 istanti successivi può assumere solo 2 valori; - Claudio Palandra -
Note sul modello C.R.R. Sia il valore del sottostante al tempo n e a, b tali che -1<a<b; allora: Affinchè il modello CRR sia privo di arbitraggio e completo è necessario che: a<r<b con probabilità p; con probabilità (1-p); - Claudio Palandra -
Note sul modello C.R.R. 1-p p 1 - Claudio Palandra -
Note sul modello C.R.R. svolgendo semplicemente i conti si ottiene da cui ottengo la misura di probabilità che chiameremo “neutrale al rischio” - Claudio Palandra -
In generale... Se h è il payoff di una opzione il prezzo è dato da: Seguendo la strategia replicante sarò in grado di generare a maturità esattamente il valore h. Nel caso particolare di una call standard il prezzo sarà: - Claudio Palandra -
Mercato completo Un mercato è completo quando qualsiasi opzione è replicabile, cioè se esiste una strategia tale che il valore finale del portafoglio è uguale al payoff dell’opzione. A differenza del concetto di arbitraggio non vi è un chiaro significato finanziario. - Claudio Palandra -
Teoremi asset pricing Un mercato è privo di arbitraggio se esiste una misura di probabilità p* equivalente a p tale che il vettore dei prezzi scontati del titolo rischioso è una p*-martingala. 2. Un mercato privo di arbitraggio è completo se esiste un’unica misura di probabilità equivalente p* tale che il vettore dei prezzi scontati del titolo rischioso è una p*-martingala. - Claudio Palandra -
Martingale Una successione di variabili aleatorie è una martingala rispetto alla filtrazione se è adattata alla filtrazione, se ha speranza matematica finita per ogni n e se, per ogni n, - Claudio Palandra -
Programmazione C++ Calcolo del prezzo di opzioni path dependent Calcolo della copertura dinamica di un’opzione Verifica della velocità di convergenza - Claudio Palandra -
Path dependent Le opzioni path dependent hanno payoff dipendente in maniera non banale dalla storia del prezzo del sottostante. In genere non esistono formule chiuse per il calcolo del prezzo. K = 100 So= 100 T = 1 12 < N < 365 10^4 < M < 10^6 PREZZO OPZIONE INTERVALLI CONFIDENZA SIMULAZIONI - Claudio Palandra -
Path dependent Asiatiche Barriera Prezzo no forma chiusa simulazioni simulazioni Prezzo - Claudio Palandra -
Asiatiche Il payoff dipende dalla media aritmetica dei valori del sottostante nel corso della vita dell’opzione: - Claudio Palandra -
Asiatiche Visto che non è facile trovare formule chiuse, nel programma ricorriamo a simulazioni: generiamo M volte il payoff; per M molto grande la media empirica ci fornisce una buona approssimazione del valore che cerchiamo: Codice back - Claudio Palandra -
Cosa succede...... ( ) K N+1 5 4 N 3 2 1 1 2 3 4 5 N + + + + + + + 2 1 1 2 3 4 5 N ( + + + + + + K ) + N+1 - Claudio Palandra -
Asiatiche Nella tabella possiamo vedere alcuni risultati facendo variare il numero di simulazioni M ed il numero di periodi nell’anno N: N=365 N=52 N=12 M=10.000 5.86649 5.81128 5.72745 M=100.000 5.75327 5.8062 5.76763 M=1.000.000 5.76844 5.75854 5.73879 - Claudio Palandra -
Asiatiche intervalli confidenza DA A M=10.000 N=365 5.70815 6.02483 M=100.000 5.70399 5.80256 M=1.000.000 5.7528 5.78407 - Claudio Palandra -
Barriera opzione attiva Sono opzioni che si attivano o si disattivano se il valore del sottostante, in un momento qualsiasi della vita di un’opzione, raggiunge una determinata soglia detta “barriera”. barriera - Claudio Palandra -
Barriera Hanno prezzo inferiore delle normali call/put perchè hanno la possibilità di entrare in stati disattivati o uscire da stati attivati. Se U è il valore della barriera, il payoff di una call up-and-in risulta: - Claudio Palandra -
Barriera Visto che non è facile trovare formule chiuse nel programma ricorriamo di nuovo a simulazioni. Codice back - Claudio Palandra -
Barriera Nella tabella possiamo vedere alcuni risultati facendo variare il numero di simulazioni M ed il numero di periodi nell’anno N: N=365 N=52 N=12 M=10.000 10.4029 10.3257 10.1298 M=100.000 10.3233 10.351 10.2859 M=1.000.000 10.2945 10.3045 10.2506 - Claudio Palandra -
Barriera intervalli di confidenza DA A M=10.000 N=365 10.115 10.6908 M=100.000 10.2316 10.415 M=1.000.000 10.2655 10.3234 - Claudio Palandra -
Variazioni sulla barriera Nella tabella abbiamo fissato M=1.000.000 e N=365; facendo variare il valore della barriera si ottiene: U PREZZO INTERVALLO 200 0.0661976 0.0611827 0.0712124 140 4.57489 4.54883 4.60294 110 10.2945 10.2655 10.3234 103 10.4336 10.4048 10.4624 CALL S. 10.4358 --------------------- - Claudio Palandra -
Simulazione Monte Carlo voglio determinare una certa quantità m; scopro che m è la media di una variabile aleatoria X; genero Q variabili aleatorie , IID; stimo m con la media aritmetica delle variabili generate: - Claudio Palandra -
Simulazione Monte Carlo per Q>>1 la seguente variabile aleatoria Z è distribuita come N(0,1) dunque possiamo determinare un intervallo di confidenza per la stima fatta: rimane il problema della stima della varianza; uso la varianza campionaria: - Claudio Palandra -
Barriera consideriamo una opzione barriera up-and-in; n=0 flag=0 simulo veloce fino a n=N n=1 continuo il ciclo n=2 ....... - Claudio Palandra -
Stima empirica velocità di convergenza Il modello C.R.R. converge per N molto grande al modello B.S.; trovare la velocità di convergenza è cosa piuttosto complessa; un tentativo “fattibile” è una stima empirica con il calcolatore: - Claudio Palandra -
Prezzo Black-Scholes Definiamo la funzione di ripartizione di una gaussiana standard e i seguenti valori: Per una put standard ed una call standard il prezzo secondo il modello Black-Scholes risulta rispettivamente: - Claudio Palandra -
Stima empirica velocità di convergenza se passo alla scala logaritmica: ascissa ordinata posso graficare e stimare con il coeff.angolare... - Claudio Palandra -
Stima empirica velocità di convergenza - Claudio Palandra -
Stima empirica velocità di convergenza L’estrapolazione di Romberg fornisce una verifica della correttezza del risultato, oltre che una stima più precisa: Codice back - Claudio Palandra -
Copertura dinamica Codice back voglio fare il venditore di opzioni: necessito costruire una strategia replicante, cioè una strategia che dia a maturità un valore di portafoglio pari al payoff dell’opzione: simulo la traiettoria del valore del sottostante, e ad ogni istante decido le quantità che dovrò acquistare all’istante successivo di sottostante e di titolo non rischioso per garantirmi la copertura; Codice back - Claudio Palandra -
Copertura dinamica ad ogni passo k osservo , ricavo le funzioni prezzo: da cui posso facilmente risalire alle quantità da acquistare tramite il sistema: - Claudio Palandra -
Copertura dinamica Risolvendo il sistema si ricavano le quantità cercate: Analizzando la prima delle 2 funzioni vediamo come questa misuri la sensibilità della variazione del prezzo dell’opzione al tempo n rispetto ad una variazione del prezzo del titolo di base. - Claudio Palandra -
Sviluppi per il futuro studio di opzioni americane; studio di algoritmi efficienti per prezzare opzioni americane path-dependent: articoli di Barraquand/Pudet e di Hull/White studio nel continuo. - Claudio Palandra -