Sistemi basati su conoscenza Conoscenza e ragionamento Prof. M.T. PAZIENZA a.a. 2001-2002.

Slides:



Advertisements
Presentazioni simili
“ LAUREE SCIENTIFICHE ”
Advertisements

Intelligenza Artificiale
Intelligenza Artificiale

Rappresentazione della conoscenza (Knowledge Representation - KR)
Semantica, inferenza e logica
O L'HA UCCISO IL MAGGIORDOMO OPPURE L'HA UCCISO LA CAMERIERA. LA CAMERIERA NON L'HA UCCISO. QUINDI: L'HA UCCISO IL MAGGIORDOMO. Tale inferenza è valida.
Il ragionamento classico
Introduzione alla Logica Modale.
Intelligenza Artificiale 2 Metodologie di ragionamento Prof. M.T. PAZIENZA a.a
Sistemi basati su conoscenza Conoscenza e ragionamento Prof. M.T. PAZIENZA a.a
Gestione dei dati e della conoscenza (agenti intelligenti) M.T. PAZIENZA a.a
Intelligenza Artificiale 1 Gestione della conoscenza lezione 7 Prof. M.T. PAZIENZA a.a
Sistemi basati su conoscenza (agenti intelligenti) Prof. M.T. PAZIENZA a.a
Intelligenza Artificiale Metodologie di ragionamento Prof. M.T. PAZIENZA a.a
Maria Teresa PAZIENZA a.a
Intelligenza Artificiale 1 Gestione della conoscenza lezione 8
Sistemi basati su conoscenza Comunicazione basata sul linguaggio naturale Prof. M.T. PAZIENZA a.a
Corso di Informatica (Programmazione)
Funzioni, Rappresentazioni e Coscienza
LOGICA E MODELLI Logica e modelli nel ragionamento deduttivo A cura di Salvatore MENNITI.
Semantica di Tarski.
Semantica per formule di un linguaggio proposizionale p.9 della dispensa.
Intelligenza Artificiale
Ingegneria della conoscenza e sistemi esperti Dario Bianchi, 1999 Conoscenza e ragionamento.
Intelligenza Artificiale - AA 2001/2002 Logica formale (Parte 2) - 1 Intelligenza Artificiale Breve introduzione alla logica classica (Parte 2) Marco Piastra.
Intelligenza Artificiale
Intelligenza Artificiale - AA 2002/2003 Logica formale (Parte 2) - 1 Intelligenza Artificiale Breve introduzione alla logica classica (Parte 2) Marco Piastra.
Introduzione ~ 1850 Boole - De Morgan – Schroeder ALGEBRA BOOLEANA
Prof. Marina BARTOLINI . “Liceo Maccari” Frosinone
Logica Matematica Seconda lezione.
INFORMATICA MATTEO CRISTANI. INDICE CICLO DELLE LEZIONI LEZ. 1 INTRODUZIONE AL CORSO LEZ. 2 I CALCOLATORI ELETTRONICI LEZ. 3 ELEMENTI DI TEORIA DELL INFORMAZIONE.
Agenti logici: calcolo proposizionale Maria Simi a.a. 2008/2009.
ARISTOTELE (logica: sillogismo)
ECDL Patente europea del computer
Congiunzione Disgiunzione Negazione Natalia Visalli.
Corso di logica matematica
Sistemi basati su conoscenza Gestione della conoscenza Prof. M.T. PAZIENZA a.a
Intelligenza Artificiale 2 Metodologie di ragionamento Prof. M.T. PAZIENZA a.a
PRESENTAZIONE DI RAGANATO ROBERTO, BISCONTI GIAMMARCO E
La logica è lo studio del ragionamento.
Algebra di Boole.
Logica A.A Francesco orilia
Logica Lezioni Lunedì 18 Nov. Annuncio E' possibile che dovrò rinviare delle lezioni della prossima settimana. Tenete d'occhio gli annunci.
La logica Dare un significato preciso alle affermazioni matematiche
Intelligenza Artificiale Metodologie di ragionamento Prof. M.T. PAZIENZA a.a
Logica Lezz Nov Reiterazione (RE) P |- P 1 P A 2 P & P 1,1, &I 3 P 2, & E.
Intelligenza Artificiale 2 Metodologie di ragionamento Prof. M.T. PAZIENZA a.a
Rappresentazione dell'informazione
Algebra di Boole L’algebra di Boole è un formalismo che opera su variabili (dette variabili booleane o variabili logiche o asserzioni) che possono assumere.
Sistemi basati su conoscenza (agenti intelligenti) Prof. M.T. PAZIENZA a.a
Intelligenza Artificiale Metodologie di ragionamento Prof. M.T. PAZIENZA a.a
AOT Lab Dipartimento di Ingegneria dell’Informazione Università degli Studi di Parma Intelligenza Artificiale Rappresentazione della Conoscenza e Ragionamento.
Sistemi basati su conoscenza Prof. M.T. PAZIENZA a.a
Intelligenza Artificiale 2 Metodologie di ragionamento Prof. M.T. PAZIENZA a.a
Intelligenza Artificiale 1 Gestione della conoscenza lezione 18 Prof. M.T. PAZIENZA a.a
Intelligenza Artificiale 1 Gestione della conoscenza lezione 14 Prof. M.T. PAZIENZA a.a
Introduzione alla rappresentazione della conoscenza ovvero… Come costruire agenti basati su conoscenza e dotati di capacità di ragionamento Maria Simi,
Rappresentazione dell'informazione 1 Se ho una rappresentazione in virgola fissa (es. su segno e 8 cifre con 3 cifre alla destra della virgola) rappresento.
Agenti logici: calcolo proposizionale Maria Simi a.a. 2006/2007.
Introduzione alla rappresentazione della conoscenza ovvero… Come costruire agenti basati su conoscenza e dotati di capacità di ragionamento Maria Simi,
ELEMENTI DI LOGICA del Prof. Giovanni Ianne
Introduzione alla LOGICA MATEMATICA Corso di Matematica Discreta. Corso di laurea in Informatica. Prof. Luigi Borzacchini III. La logica delle proposizioni.
Le proposizioni DEFINIZIONE. La logica è un ramo della matematica che studia le regole per effettuare ragionamenti rigorosi e corretti. DEFINIZIONE. Una.
Logica Lezione 8, DISTRIBUIRE COMPITO 1.
Introduzione alla LOGICA MATEMATICA Corso di Matematica Discreta. Corso di laurea in Informatica. Prof. Luigi Borzacchini II. La logica delle proposizioni.
Logica Lezione 19, Distribuire compito 3 DATA esame in classe intermedio: Lunedì 20 aprile.
Logica Lezione 11, Annuncio Non si terrà la lezione di Lunedì 16 Marzo.
INSIEMI E LOGICA PARTE QUARTA.
Intelligenza Artificiale 1 Sistemi basati su conoscenza Conoscenza e ragionamento Prof. M.T. PAZIENZA a.a
Transcript della presentazione:

Sistemi basati su conoscenza Conoscenza e ragionamento Prof. M.T. PAZIENZA a.a

Conoscenza e ragionamento Capacità di: Costruire rappresentazioni del mondo Usare un processo di inferenza per derivare nuove rappresentazioni del mondo Usare queste rappresentazioni per dedurre (decidere cosa fare) Realizzazione di agenti con conoscenza del mondo e capacità di ragionare sui possibili modi di agire

Conoscenza e ragionamento Rappresentazione e ragionamento supportano insieme il funzionamento di un agente basato su conoscenza

Conoscenza e ragionamento Un agente con obiettivi ricerca soluzioni per raggiungere tali obiettivi (differenti modalità di ricerca) Un agente logico possiede almeno una conoscenza generale del mondo (rappresentazione) ed è capace di ragionare (processi di inferenza). Usa il ragionamento logico: per mantenere una descrizione del mondo allarrivo di nuove percezioni per dedurre una sequenza di azioni capace di fargli raggiungere lobiettivo

Conoscenza e ragionamento Agenti che Riconoscono nuovi obiettivi descritti esplicitamente Acquisiscono conoscenze dallambiente Modificano le conoscenze che hanno dellambiente Inferiscono nuove proprietà del mondo dalle proprie percezioni Riconoscono i cambiamenti temporali

Base di conoscenza (KB) di un agente logico KB= insieme di formule/espressioni/frasi (rappresentazioni di aspetti del mondo) espresse in uno specifico linguaggio Si può arricchire la KB con lasserire nuove formule Si può interrogare la KB per ottenere risposte

Base di conoscenza (KB) di un agente logico La KB non crea conoscenza, né fatti, né azioni; fornisce risposte alle interrogazioni Il meccanismo di inferenza permette di determinare cosa segue da ciò che è stato chiesto alla KB Il ragionamento logico permette di individuare lazione migliore tra le possibili (in base alla conoscenza dellagente ed al suo obiettivo)

Agente basato su conoscenza Elementi fondamentali per la progettazione di un agente sono: Il linguaggio formale per esprimere la conoscenza Gli strumenti per esprimere ragionamenti in quel linguaggio LOGICA

Agente basato su conoscenza Ask -> si ragiona logicamente per scegliere lazione Tell -> prima si invia linformazione (percezione), poi lazione scelta; entrambe vanno ad arricchire la KB iniziale,

Agente basato su conoscenza Livello di conoscenza o livello epistemologico (si descrive un agente in base a ciò che conosce) Livello logico (conoscenza codificata in formule) Livello di implementazione (rappresentazioni fisiche delle formule del livello logico)

Agente basato su conoscenza Approccio dichiarativo alla costruzione di un agente Per costruire un agente basato su conoscenza basta dirgli ciò che deve sapere (aggiungendo formula su formula) Meccanismi di apprendimento che, a partire da percezioni, facciano acquisire allagente conoscenza sullambiente In un agente la capacità di apprendere conduce allautonomia

Mondo del Wumpus

Realizzare un agente logico Loggetto della rappresentazione della conoscenza è lespressione della conoscenza in forma trattabile automaticamente Linguaggio di rappresentazione della conoscenza Meccanismi di inferenza

Realizzare un agente logico Linguaggio di rappresentazione della conoscenza Sintassi = possibili configurazioni delle formule Semantica = determina la realtà di riferimento delle formule Il linguaggio naturale è molto ambiguo Meccanismi di inferenza attraverso il linguaggio ( meccanismi di ragionamento sulle rappresentazioni dei fatti )

Rappresentazione della conoscenza e ragionamento I meccanismi di ragionamento operano sulle rappresentazioni dei fatti Un fatto segue un altro fatto in quanto rispecchia la proprietà della corrispondente formula di derivare da unaltra formula (frase)

Rappresentazione della conoscenza e ragionamento Limplicazione produce nuove formule vere da precedenti formule vere Le formule implicate da una KB sono vere Una procedura di inferenza i che genera solo formule implicate è corretta e preserva la verità (ovvero data una KB i passi di inferenza derivano solo da nuove formule che rappresentano fatti che seguono da fatti rappresentati) i può essere descritta dalle frasi che può derivare

Ragionamento e logica La sequenza di operazioni di una procedura di inferenza i è chiamata dimostrazione i è completa se può trovare una dimostrazione per qualsiasi formula implicata

Semantica / Interpretazione Il significato di una formula è ciò che essa asserisce sul mondo attraverso una interpretazione Una formula da sola non ha significato, pur essendo corretta I linguaggi di rappresentazione impongono una relazione sistematica tra formule e fatti Un linguaggio si dice composizionale quando il significato di una formula è una funzione dei significati delle sue parti

Sintassi e Semantica Data uninterpretazione semantica, una formula asserisce qualcosa del mondo Una formula è vera secondo una particolare interpretazione se lo stato delle cose che rappresenta è vero (Una formula che rispetti la sintassi è di per sé corretta)

Sintassi / Semantica Garantire la corrispondenza SF SF Semantica Sintassi

Ragionamento corretto Linferenza logica è il processo che realizza la relazione di implicazione tra formule Una formula è necessariamente vera / valida se e solo se è vera secondo tutte le possibili interpretazioni in tutti i mondi possibili ed in tutti gli stati del mondo TAUTOLOGIE Una formula è soddisfacibile se e solo se esiste una qualche interpretazione in qualche mondo per la quale sia vera; insoddisfacibile se non cè

Ragionamento automatico Il processo di ragionamento automatico conosce solo ciò che esiste nella KB (fatti e formule) Applicare una procedura di inferenza alla KB permette di dimostrare che una formula derivata è valida anche se non si conosce linterpretazione Il ragionamento automatico siffatto ha validità generale; linterpretazione lo contestualizza allapplicazione

Sistema di ragionamento Un sistema formale per la descrizione di stati di cose consiste di: Sintassi del linguaggio Semantica del linguaggio Una teoria della dimostrazione è un insieme di regole per la deduzione delle implicazioni di un insieme di formule

Logica Assunzioni ontologiche (relative alla natura della realtà) Assunzioni epistemologiche (possibili stati della conoscenza)

Logica proposizionale (booleana) Simboli rappresentano proposizioni / fatti Proposizioni combinabili tramite connettivi booleani (si ottengono formule con significati più complessi) Assunzione ontologica: proposizioni vere o false Assunzione epistemologica: lagente crede in un fatto, non crede, oppure non sa decidere

Logica proposizionale Sintassi Simboli: Costanti logiche Vero / Falso Simboli proposizionali (es. P, Q) Connettivi logici Formule (costanti logiche, simboli proposizionali, formule tra parentesi o combinazioni di formule tramite connettivi logici)

Logica proposizionale Sintassi Connettivi logici (and) per la congiunzione logica di due formule (or) per la disgiunzione (implica) per limplicazione (regole / asserzioni if-then) (equivalenza) tra formule (not) negazione di una formula

Logica proposizionale Semantica La semantica della logica proposizionale si definisce specificando linterpretazione dei simboli proposizionali, delle costanti ed i significati dei connettivi logici

Logica proposizionale Semantica Le costanti logiche hanno il significato vero / falso Un simbolo proposizionale può significare qualunque cosa Una formula complessa ha il significato derivato dal significato delle sue parti (composizionalità)

Tavola delle verità dei connettivi logici Per definire una funzione è necessario costruire una tabella che dia i valori di uscita per ogni possibile valore di ingresso

Tavola delle verità dei connettivi logici Sono utilizzate per la definizione dei connettivi Sono utilizzate per la validità delle formule complesse Definiscono la semantica delle formule come vero/falso (nonostante lagente non abbia alcuna idea sul significato della formula)

Tavola della verità di una formula complessa Una formula è valida quando è vera per ogni riga della corrispondente tavola della verità

Ragionamento automatico Nonostante lagente non abbia alcuna idea sul significato della formula, un sistema di ragionamento automatico è capace di giungere a conclusioni che seguono dalle premesse, indipendentemente dal mondo cui le formule si riferiscono.

Modelli Un mondo in cui una formula è vera secondo una particolare interpretazione è chiamato modello di quella interpretazione Ogni possibile assegnazione di vero o falso ad un insieme di simboli proposizionali può essere vista come una classe di equivalenza di mondi che, secondo una data interpretazione, hanno quei valori di verità per quei simboli

Modelli di formule complesse

Regole di inferenza Il processo che permette di stabilire la correttezza di una inferenza tramite le tavole di verità può essere esteso ad intere classi di inferenza Una regola di inferenza è corretta se la conclusione è vera in tutti i casi in cui le premesse sono vere

Tavola di verità per regole di inferenza

Regole di inferenza per la logica proposizionale Modus ponens (eliminazione delle implicazioni) Eliminazione degli and Introduzione di and Introduzione di or Eliminazione delle doppie negazioni Risoluzione unitaria Risoluzione

Problemi della logica proposizionale Troppe proposizioni da considerare Non viene gestito il cambiamento (tempo) Esiste solo la proposizione per rappresentare le informazioni