MODELLO DI REGRESSIONE LINEARE MULTIPLA

Slides:



Advertisements
Presentazioni simili
Corso di ECONOMETRIA A.A Dispensa n.2.
Advertisements

Statistica Economica I
Come organizzare i dati per un'analisi statistica al computer?
Dipartimento di Economia
Tecniche di analisi dei dati e impostazione dellattività sperimentale Relazioni tra variabili: Correlazione e Regressione.
Capitolo 8 Sistemi lineari.
COORDINATE POLARI Sia P ha coordinate cartesiane
LE MATRICI.
Implementazione del problema della approssimazione ai minimi quadrati Camillo Bosco Corso di Analisi Numerica A.A
Algebra delle Matrici.
Dipartimento di Economia
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 10.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11.
redditività var. continua classi di redditività ( < 0 ; >= 0)
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8.
Ipotesi e proprietà dello stimatore Ordinary Least Squares (OLS)
IL MODELLO DI REGRESSIONE MULTIPLA
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA: test sui parametri e scelta del modello (parte 3) Per effettuare test di qualsiasi natura è necessaria.
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA (parte 1)
RICHIAMI ELEMENTARI DI ALGEBRA MATRICIALE
Statistica per le decisioni aziendali ed analisi dei costi Modulo II - Statistica per le decisioni Aziendali Richiami di Algebra Matriciale.
Dip. Economia Politica e Statistica
E(’)= Riassumendo: ipotesi per OLS Modello lineare
La logica della regressione
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9.
Sistemi di equazioni lineari
STATISTICA a.a METODO DEI MINIMI QUADRATI REGRESSIONE
Corso di Chimica Fisica II 2013 Marina Brustolon
Modello di regressione lineare semplice
“Analisi delle serie storiche e applicazioni”
STATISTICA PER LE DECISIONI DI MARKETING
STATISTICA PER LE DECISIONI DI MARKETING
Introduzione ai Metodi Inversi
MODELLI A COMPONENTI DI VARIANZA EFFETTI CASUALI - RANDOM EFFECTS
DATA MINING PER IL MARKETING
DATA MINING PER IL MARKETING
DATA MINING PER IL MARKETING
DATA MINING PER IL MARKETING
Regressione Lineare parte 2 Corso di Misure Meccaniche e Termiche David Vetturi.
L’analisi di regressione lineare ed i passaggi logici
DATA MINING PER IL MARKETING
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9 Regressione lineare multipla: la stima del modello e la sua valutazione, metodi automatici.
L’impiego della Programmazione Lineare nel settore agro-alimentare: punti di forza e limiti Il modello teorico Applicazioni operative Punti di forza e.
La verifica d’ipotesi Docente Dott. Nappo Daniela
Lezione B.10 Regressione e inferenza: il modello lineare
IL CAMPIONE.
redditività var. continua classi di redditività ( < 0 ; >= 0)
Analisi Multivariata dei Dati
Riassumendo: ipotesi per OLS 1.Modello lineare 2.X e Y sono frutto di osservazioni indipendenti 3.X è di rango pieno 4.I residui hanno media = 0 5.I residui.
Assicurazioni vita e mercato del risparmio gestito Lezione 17 Stimatori bayesiani e allocazione del portafoglio.
MODELLO DI REGRESSIONE LINEARE MULTIPLA
REGRESSIONE LINEARE Relazione tra una o più variabili risposta e una o più variabili esplicative, al fine di costruire una regola decisionale che permetta.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9.
TRATTAMENTO STATISTICO DEI DATI ANALITICI
DATA MINING PER IL MARKETING (63 ore) Marco Riani Sito web del corso
L’analisi di regressione e correlazione Prof. Luigi Piemontese.
Sistemi di equazioni lineari. Sistemi di primo grado di due equazioni a due incognite Risolvere un sistema significa trovare la coppia di valori x e y.
Regressione semplice e multipla in forma matriciale Metodo dei minimi quadrati Stima di beta Regressione semplice Regressione multipla con 2 predittori.
DATA MINING PER IL MARKETING (63 ore) Marco Riani Sito web del corso
DATA MINING PER IL MARKETING (63 ore) Marco Riani Sito web del corso
Lezione n° 8 - Matrice di base. - Soluzioni di base ammissibili. - Relazione tra vertici di un poliedro e soluzioni basiche. - Teorema fondamentale della.
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE SEMPLICE
Regressione: approccio matriciale Esempio: Su 25 unità sono stati rilevati i seguenti caratteri Y: libbre di vapore utilizzate in un mese X 1: temperatura.
Statistica per l’economia e l’impresa Capitolo 4 MODELLO DI REGRESSIONE LINEARE SEMPLICE.
MODELLO DI REGRESSIONE LINEARE MULTIPLA
DATA MINING PER IL MARKETING (63 ore) Marco Riani Sito web del corso
Prof. Cerulli – Dott. Carrabs
Transcript della presentazione:

MODELLO DI REGRESSIONE LINEARE MULTIPLA Il problema Specificazione del modello Le assunzioni Stimatori OLS e proprietà R2 , variabilità totale , spiegata , residua Previsione Variabili dummy Violazioni delle ipotesi del modello

Si tratta di una relazione asimmetrica del tipo 1. IL PROBLEMA Ricerca di un modello matematico in grado di esprimere la relazione esistente tra una variabile di risposta y (quantitativa) e ( ad esempio) k variabili esplicative Si tratta di una relazione asimmetrica del tipo Nel caso del modello di regr.lineare multipla abbiamo che: che geometricamente corrisponde ad un iperpiano a k dimensioni Perché si studia tale modello facilità con cui può essere interpretato un iperpiano a k dimensioni Facilità di stima dei parametri incogniti bj ( j = 1…k) Nella realtà studiamo un modello del tipo Componente componente sistematica casuale

: vettore (n x 1) di osservazioni sulla variabile dipendente 2. IL MODELLO In forma matriciale dove : vettore (n x 1) di osservazioni sulla variabile dipendente : matrice (n x k) di osservazioni su k regressori : vettore (k x 1) di parametri incogniti : vettore (n x 1) di disturbi stocastici

Le matrici e i vettori sono così definiti N.B. La matrice X ha la prima colonna unitaria nel caso in cui si consideri un modello con intercetta b1 nel sistema di riferimento multidimensionale

3. LE ASSUNZIONI DEL MODELLO Esiste legame lineare tra variabile dipendente e regressori Le variabili sono tutte osservabili I coefficienti bi non sono v.c. I regressori X sono non stocastici Il termine u non è osservabile 7) le ui sono omoschedastiche ed incorrelate X ha rango pieno rank (X) = k condizione necessaria hp aggiuntiva da utilizzare nell’analisi inferenziale

Si cercherà quel vettore che minimizza gli scarti al quadrato: 4. STIMATORE OLS y = Xb + u Si cercherà quel vettore che minimizza gli scarti al quadrato: dove Xi è la riga i-esima di X In forma matriciale = perché scalare (1)

perché è uno scalare dalla (1) si ottiene pre-moltiplicando ambo i membri perché rank (X’X) = rank (X) = k X’X è a rango pieno ovvero invertibile stimatore OLS di b

CARATTERISTICHE STIMATORE OLS Teorema di Gauss-Markov è uno stimatore di tipo BLUE Best Linear Unbiased Estimator ovvero ha varianza minima nella classe degli stimatori Lineari e Corretti La matrice è formata da elementi costanti per cui è una trasformazione lineare di y . 2. È uno stimatore corretto Inoltre:

Si consideri più in dettaglio Pertanto la varianza di ogni parametro si desume prendendo il corrispondente valore sulla diagonale principale della , moltiplicato per : 3.

Definiamo uno stimatore alternativo lineare e corretto dove C è una matrice (n x k) ma Pertanto la è la minima nella classe degli stimatori lineari e corretti, e risulta provato il teorema di Gauss-Markov .

MX è simmetrica e idempotente, cioè: 1. 2. STIMA DI MX è simmetrica e idempotente, cioè: 1. 2. Da queste proprietà di MX si ottiene perché scalare tr(ABC)= tr(BCA)= tr(BAC)

è uno stimatore corretto Se definiamo