ANALOGICO-DIGITALI (ADC) DIGITALE-ANALOGICI (DAC)

Slides:



Advertisements
Presentazioni simili
Dall’informazione al linguaggio macchina
Advertisements

Rappresentazioni numeriche
Ingressi ADC 8 canali con ADC a 10-bit I/O pins dal 13 al 20
PROGETTO DI UN SISTEMA DI ACQUISIZIONE DATI
SISTEMA DI ACQUISIZIONE E DISTRIBUZIONE DATI
Introduzione ai circuiti elettronici digitali
Rappresentazione di Numeri Reali
Convertitori D/A e A/D Enzo Gandolfi.
Elaborazione numerica del suono
Elaborazione numerica del suono
Circuiti Aritmetico-Logici
Rappresentazioni numeriche
Cenni sul campionamento
Digital Data Acquisition
Argomento : Spettro di un segnale Obiettivo: comprensione del concetto di spettro; Prerequisiti culturali : funzioni, funzioni trigonometriche Ausili didattici.
Il Convertitore Digitale – Analogico ( DAC )
Convertitori Analogico/Digitali
Convertitori Digitale/Analogico
Circuiti di memorizzazione elementari: i Flip Flop
CONVERSIONE ANALOGICO-DIGITALE, A/D
CARATTERISTICHE DEI CONVERTITORI DIGITALI-ANALOGICI (DAC)
ESEMPI DI ARCHITETTURE DI DAC
CONVERTITORI A/D ad ELEVATE PRESTAZIONI
INTRODUZIONE AI CONVERTITORI ANALOGICO-DIGITALI (ADC)
Cenni sugli amplificatori
ANALOGICO-DIGITALI (ADC) DIGITALE-ANALOGICI (DAC)
ANALOGICO-DIGITALI (ADC) DIGITALE-ANALOGICI (DAC)
Informatica 3 Codifica binaria.
Autronica LEZIONE N° 3 Segnale analogico Segnale campionato
Autronica LEZIONE 3.
Cosa è un DAC? Digital-to-Analog converter dispositivo “mixed signal”: Input digitale (parola a n bit) Output analogico: tensione o corrente.
Conversione Analogico/Digitale
Convertitore A/D e circuito S/H
La conversione analogico-digitale, campionamento e quantizzazione
Laboratorio di El&Tel Elaborazione numerica dei segnali: analisi delle caratteristiche dei segnali ed operazioni su di essi Mauro Biagi.
Elaborazione (digitale) delle immagini
Limiti al trasferimento di informazione u Il tempo necessario per trasmettere dellinformazione dipende da: –la velocita di segnalazione (cioe quanto velocemente.
Cos’è una sequenza? Una sequenza è una successione finita di valori, dove ogni valore ha una durata prefissata e costante (T). I valori della sequenza.
Rappresentazione dell’informazione
Diagramma degli stati che descrive il comportamento della rete.
Cassaforte Asincrona di Mealy
Convertitori Analogico-Digitali
Convertitori Digitale-Analogico
Cosa è un DAC? Digital-to-Analog converter dispositivo mixed signal: o Input digitale (parola a n bit) o Output analogico: tensione o corrente output.
INTRODUZIONE AI SEGNALI SEZIONE 7
A. Cardini / INFN Cagliari
Sistemi di acquisizione
CONVERTITORE ANALOGICO / DIGITALE
DISPOSITIVI SENSIBILI:
TRASDUTTORI E SENSORI.
GRANDEZZE ANALOGICHE E DIGITALI
Parte Terza: Codificare l’informazione
Argomenti di oggi Proprietà di un trasduttore.
L’amplificatore operazionale (AO)
Codifica dell’informazione
LA CONVERSIONE A/D.
Free Powerpoint Templates Page 1 Free Powerpoint Templates I SEGNALI: ANALOGI-DIGITALI Luca Santucci 5°A Progr.
Fabio Garufi - TAADF Tecniche automatiche di acquisizione dati Sensori Prima parte.
ADC – SCHEMA GENERALE I convertitori AD sono disponibili come circuiti integrati in diversi modelli, che differiscono fra loro per prezzo, prestazioni.
LATCH. Circuiti Sequenziali I circuiti sequenziali sono circuiti in cui lo stato di uscita del sistema dipende non soltanto dallo stato di ingresso presente.
DAC A RESISTORI PESATI.
Autronica 3.1 Autronica LEZIONE 3. Autronica 3.2 Il mondo esterno è caratterizzato da variabili analogiche  Un segnale analogico ha un’ampiezza che varia.
A.S.E.3.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 3 Segnale analogicoSegnale analogico Segnale campionatoSegnale campionato Segnale numericoSegnale.
Segnali analogici : variano in modo continuo nel tempo e possono assumere tutti i valori compresi in un certo intervallo Segnali digitali: possono assumere.
Data Acquisition System I° Modulo(DAS) Corso di Elettronica1.
Sistema di controllo ON – OFF (1)
Conversione Analogico/Digitale Le grandezze fisiche che vogliamo misurare variano con continuità in un dato intervallo ed in funzione del tempo: sono descrivibili.
CONVERTITORI TENSIONE/FREQUENZA FREQUENZA/TENSIONE
Logica di base e Conversione analogico-digitale Lezione 3 / Prima parte Gaetano Arena e.mail: 1.
Laboratorio II, modulo Conversione Analogico/Digitale ( cfr.
Transcript della presentazione:

ANALOGICO-DIGITALI (ADC) DIGITALE-ANALOGICI (DAC) CONVERTITORI ANALOGICO-DIGITALI (ADC) e DIGITALE-ANALOGICI (DAC)

Segnali analogici : variano in modo continuo nel tempo e possono assumere tutti i valori compresi in un certo intervallo Segnali digitali: possono assumere valori discreti in istanti di tempo discreti. La discretizzazione del tempo può essere asincrona o sincrona con un clock X(t) t X[n] t +1 +2 -1 -2 In campo digitale le informazioni sono organizzate secondo una struttura “binaria” cioè si utilizzano due soli valori logici “0” e “1”. I due valori logici vengono associati a intervalli di tensione che variano a seconda della tecnologia utilizzata per la costruzione del circuito

segnali analogici – segnali digitali grandezza fisica segnale elettrico trasduttore trattamento del segnale segnale grandezza fisica variabile segnale elettrico analogico andamento della grandezza fisica T andamento della temperatura in funzione del tempo andamento della tensione in funzione del tempo

trasmissione a distanza di piccoli segnali  diversi stadi di amplificazione  introduzione del rumore  degradazione del segnale. conversione analogico – digitale riduce la distorsione del segnale. segnale digitale: sequenza di 1 e 0 Esempio di applicazione : Waveform digitizers (digitizzatori di forme d’onda)

Caratteristiche dei convertitori 1 Risoluzione espressa in bit. Esempio : un ADC che codifica un ingresso analogico in 256 livelli discreti ha una risoluzione di 8 bit (28 = 256) espressa in Volt. Esempio 1: range compreso tra 0 e 10 volt risoluzione dell'ADC di 12 bit: 212 = 4096 livelli di quantizzazione risoluzione in Volt è 10 V / 4096=0.00244 V = 2.44 mV Esempio 2: range compreso tra -10 e 10 volt risoluzione dell'ADC di 14 bit: 214 = 16384 livelli di quantizzazione 20 V / 16384=0.00122 V = 1.22 mV 111 110 101 100 011 010 001 000 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 ingresso analogico uscita digitale straight line 111 110 101 100 011 010 001 000 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 ADC non monotono

Caratteristiche dei convertitori 2 linearità: La maggior parte degli ADC sono lineari,  sono progettati per produrre in uscita un valore funzione lineare del segnale di ingresso. Un altro tipo comune di ADC è quello logaritmico monotonicità : aumentando la tensione di ingresso deve aumentare l’uscita digitale (e viceversa) – se questo non avviene si ha un errore di monotonicità 111 110 101 100 011 010 001 000 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 ingresso analogico uscita digitale straight line 111 110 101 100 011 010 001 000 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 ADC non monotono

Caratteristiche dei convertitori 3 111 110 101 100 011 010 001 000 offset error +1½ LSB caratteristica ideale 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 Errori di OFF SET : la tensione di OFFSET è quella misurata quando tutti gli ingressi digitali sono 0 Si misura generalmente in mV, mV o frazione del bit meno significativo. Errori di non linearità: è la differenza tra la variazione di tensione letta in uscita e quella ideale (cioè quella corrispondente alla variazione di 1 LSB (bit meno significativo) Ad es.: un DAC per il quale, al variare di 1 LSB si ottiene una variazione di tensione corrispondente ad 1.5 LSB ha un errore di non linearità pari a mezzo LSB. 111 110 101 100 011 010 001 000 0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 caratteristica ideale a b b - a differential error

Qualche esempio di ADC ADC a contatore convertitore semplice ed economico, ma lento si usano : un contatore, un DAC ed un comparatore il contatore genera una sequenza di numeri binari partendo da zero fino al max valore che il numero di bit consente. ciascun numero viene convertito dal DAC in segnale analogico che viene inviato al comparatore e confrontato con il segnale. l’uscita dal comparatore è positiva fin quando il segnale da convertire è maggiore del segnale in uscita dal DAC. quando il comparatore dà un segnale negativo, il contatore viene bloccato e il numero letto all’uscita del contatore è una stima approx per eccesso del segnale in esame. sono necessari fino a 2N confronti errore di quantizzazione: metà del bit meno significativo es.: ADC a 4 bit, con una risoluzione di 1 bit/100 mV,  errore = ± 50 mV

ADC ad approssimazioni successive consente di ridurre drasticamente il numero di confronti e quindi di velocizzare l’operazione procedura generale per trasformare un numero decimale compreso tra 0 e 15, in binario, per esempio k = 8.5. dividiamo in due l’intervallo tra 0 e 15. A quale intervallo appartiene il numero? Se 0 ≤ k < 8  bit 3 = 0; se 8 ≤ k <16  bit 3 = 1 nel nostro caso dividiamo ancora in due l’intervallo 8-16. Se 8 ≤ k <12  bit 2 = 0; se 12 ≤ k <16 bit 2 = 1. dividiamo in due l’intervallo 8 -12 Se 8 ≤ k <10  bit 1 = 0; se 10 ≤ k <12 bit 1 = 1. dividiamo in due l’intervallo 8 -10 Se 8 ≤ k <9  bit 0 = 0; se 9 ≤ k <10 bit 0 = 0. Sono stati necessari solamente 4 confronti

Lo stesso procedimento viene usato per la conversione di un segnale di tensione si fa il controllo bit per bit. si pone A3 = 1 (MSB)  Vb = output da DAC = 810 = 10002 si confronta Vb con Va (=8.5 V). Se Va ≥ Vb la logica di controllo lascia il bit A3 a 1, altrimenti lo pone =0 Impulso successivo del contatore ad anello pone A2 =1  Vb= 12V Poiché Va ≤ Vb la logica di controllo pone A2 = 0 e A1 =1  Vb= 10V Va ≤ Vb  la logica di controllo pone A1 = 0 e A0 =1  Vb= 9V A questo punto Vb > Va  A0 =0 la conversione è finita con appena 4 confronti (precisione di 1/2 bit) Va ≥ Vb  uscita del comparatore alta bit successivo =1

ADC flash si confronta la tensione in esame con un numero finito di livelli di tensione predeterminati. confronto contemporaneo  ADC molto veloce si determina quale sia l’intervallo, delimitato da due tensioni di soglia adiacenti che contiene il valore della tensione di ingresso. le uscite dei comparatori hanno un livello basso ( 0) se la soglia è superiore alla tensione di ingresso, hanno un livello alto (1) se la soglia è inferiore hardware complesso: 2N-1 comparatori, per N bit logica di controllo e codificatore

Convertitori Digitale - Analogico immaginiamo di voler convertire un’informazione binaria (uscita di un circuito digitale, per es. N Flip-Flop) in una tensione (segnale analogico) Vout V è un coefficiente di proporzionalità legato al range di tensioni che vogliamo in uscita e i coefficienti ai valgono 0 o 1 (uscita bassa o alta del FF) circuito sommatore Ro = R e R1 =R/2  Vout = -(Vo+2V1) se Vo e V1 sono le uscite di un registro a 2 bit Vi = 0  livello basso  numero binario 0 Vi = 1  livello alto  numero binario 1 abbiamo costruito un convertitore D/A a 2 bit Vo = 1, V1 = 0  Vout =-1; Vo = 0, V1 = 1  Vout = -2 ecc.

Convertitore D/A a resistenze pesate Si può estendere il discorso ad un numero maggiore di bit quando il coefficiente ai = 0, l’interruttore Si è collegato a massa Convertitore D/A a resistenze pesate

AO Supponiamo di lavorare in logica negativa, cioè il valore alto (1) è associato ad una tensione pari a 0V e il valore basso (0) è associato ad una tesnsione pari a -10 V AO INPUT ai MOSFET da un registro che immagazzina l’informazione digitalizzata, es. un FLIP FLOP, se in ingresso ho 1 avrò Q=1 e così il MOSFET Q1 sarà abilitato e il Q2 interdetto e la resistenza R1 sarà collegata a VR, il contrario avverrà se in ingresso al FF ho 0, cioè avremo la resistenza R1 collegata a terra

DIFETTI: stabilità ed accuratezza dipendono dalle resistenze e alla dipendenza dei componenti dalla temperatura ampio range di resistenze: per es. DAC a 10 bit con R = 10 kW  2N-1 R = 29 R = 5.12 MW. Difficile gestire accuratezza. R ha un peso 29 volte più importante della resistenza più grande (29 R) quindi, se la tolleranza su quest’ultima è il 10%, la tolleranza su quella da 10 kW dovrà essere 29 volte più piccola, cioè 0.02% !!!

si usano solo resistenze R e 2R DAC a ladder si usano solo resistenze R e 2R ciascun nodo vede una resistenza 2R in qualunque direzione nodo 3: destra  2R complessivamente la basso  2R resistenza vista da 3 in basso e a destra è R nodo 2: destra  R in serie con la resistenza vista da 3  2R si può estendere a tutti i nodi

Immaginiamo tutti gli interruttori a terra a parte uno solo, collegato a VR. La tensione nel nodo corrispondente sarà data da VR meno la caduta di potenziale ai capi di 2R Vi =VR – 2R I = VR – 2R VR/3R = VR/3 in conclusione, qualunque nodo il cui interruttore sia chiuso su VR si troverà ad un potenziale VR/3. I=VR/3R

Immaginiamo una configurazione in cui tutti i nodi sono a terra a parte il nodo 3. Vi =V3 = VR/3 = V+ = V- (sfruttiamo il principio del corto circuito virtuale all’ingresso dell’operazionale). poiché in R1 ed R2 scorre la stessa corrente avremo: (Vo – VR/3) 1/R2 = VR/3R1  Vo = VR/3 (R1+R2)/R1 = Se l’unico nodo non a terra fosse il 2, la tensione al terminale non invertente sarebbe la metà di quella calcolata precedentemente: Vo = ½ VR/3 (R1+R2)/R1 = ½ e così via, muovendosi verso sinistra, avremmo una tensione pari a metà di quella precedente. Per il principio di sovrapposizione possiamo scrivere, nel caso generale:

A meno di un fattore moltiplicativo, questa è la rappresentazione analogica del numero binario a3 a2 a1 a0 DIFETTO : ritardo nella propagazione del segnale associato alla chiusura degli interruttori  per un breve intervallo di tempo variabilità di valori per ovviare a questo inconveniente si può usare una configurazione diversa in cui gli interruttori sono tutti collegati direttamente all’ingresso dell’operazionale il funzionamento è analogo a quello descritto prima, ma non esiste più il problema dei ritardi.