A.S.E.5.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 5 Calcolatori elettronici Rappresentazione dellinformazioneRappresentazione dellinformazione.

Slides:



Advertisements
Presentazioni simili
Dall’informazione al linguaggio macchina
Advertisements

Rappresentazioni numeriche
Informatica Generale Susanna Pelagatti
Introduzione ai circuiti elettronici digitali
Fondamenti di Informatica
Rappresentazioni numeriche
Trasmissione delle informazioni
Codifica dei Dati Idea: vogliamo rappresentare dati eterogenei utilizzando un linguaggio che l’elaboratore puo’ facilmente manipolare Essenzialmente vogliamo.
Vincenza Ferrara dicembre 2007 Fondamenti di Matematica e Informatica Laboratorio Informatica I anno a.a
Sistemi di numerazione e codici
La rappresentazione delle informazioni
1 © 1999 Roberto Bisiani Rappresentazione delle informazioni n Occorre un codice n Legato alla tecnologia usata Robustezza Semplicita Economicita.
Rappresentazione dei dati e codifica delle informazioni
Informatica 3 Codifica binaria.
Autronica LEZIONE N° 8 Sistema numerico Base 2, 3, 4, 5, 8, 10, 12, 16
Sistemi Elettronici Programmabili
Sistemi Elettronici Programmabili
ARCHITETTURA DEI SISTEMI ELETTRONICI
A.S.E.13.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 13 Fenomeni transitoriFenomeni transitori Somma e differenza di due numeri in C2Somma e differenza.
A.S.E.13.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 13 Somma e differenza di due numeri in C2Somma e differenza di due numeri in C2 Half AdderHalf.
A.S.E.3.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 3 Sistema numericoSistema numerico Base 2, 3, 4, 5, 8, 10, 12, 16Base 2, 3, 4, 5, 8, 10, 12,
A.S.E.6.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 6 Complemento a MComplemento a M Rappresentazione di numeri con segnoRappresentazione di numeri.
A.S.E.4.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 4 Conversione da base N a base 10Conversione da base N a base 10 Conversione da base 10 a base.
A.S.E.5.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 5 Rappresentazione di numeri con segnoRappresentazione di numeri con segno –Modulo e segno (MS)
A.S.E.13.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 13 Fenomeni transitoriFenomeni transitori Somma e differenza di due numeri in C2Somma e differenza.
Sistemi di Numerazione
Corso di Informatica (Programmazione)
1 Corso di Laurea in Biotecnologie Informatica (Programmazione) Rappresentazione dellinformazione su calcolatore Anno Accademico 2009/2010.
Corso di Informatica (Programmazione)
Settembre 2002IFTS2002 Acq. Dati Remoti: INFORMATICA 1 Rappresentazione dellinformazione (1)
by Vaccaro Maria Antonietta
Corso di Informatica per Giurisprudenza
Esistono 10 tipi di persone al mondo: Quelli che conoscono il codice binario & Quelli che non lo conoscono.
I CODICI.
Rappresentazioni numeriche
Rappresentazione binaria dei numeri interi senza segno.
Codici binari decimali
Università degli Studi di Siena
1 Sistemi Digitali. 2 Definizione Analog Waveform Time Voltage (V) 0 5 Digital Waveform Time Voltage (V)
Rappresentazioni numeriche. Introduzione Un calcolatore elettronico dispone di uno spazio finito per memorizzare le cifre che esprimono un valore numerico.
La rappresentazione dellinformazione. 7-2 Digitalizzare linformazione Digitalizzare: rappresentare linformazione per mezzo di cifre (ad es: da 0 a 9)
Cos’è un problema?.
Il sistema binario.
Gli esseri viventi ricevono informazione direttamente dal mondo circostante e dai propri simili attraverso i sensi (percezione). La percezione, tuttavia,
Codifica binaria Rappresentazione di numeri
Programma del corso Dati e loro rappresentazione Architettura di un calcolatore Sistemi operativi Linguaggi di programmazione Applicativi: - fogli elettronici.
Conversione binario - ottale/esadecimale
Conversione binario - ottale/esadecimale
1 © 1999 Roberto Bisiani Rappresentazione delle informazioni n Occorre un codice n Legato alla tecnologia usata Robustezza Semplicita Economicita.
Rappresentazione dell’informazione
Corso di Laurea in Biotecnologie corso di Informatica Paolo Mereghetti DISCo – Dipartimento di Informatica, Sistemistica e Comunicazione.
Programma del corso Introduzione agli algoritmi Rappresentazione delle Informazioni Architettura del calcolatore Reti di Calcolatori (Reti Locali, Internet)
1101 = x 10 x 10 x x 10 x = CORRISPONDENZE
Che cos’è un sistema di numerazione?
Process synchronization
Rappresentazione dell’Informazione
Rappresentazione dell’informazione nel calcolatore.
Rappresentazione Dati Codificare informazioni nel Computer
ARCHITETTURA DEI SISTEMI ELETTRONICI
Informatica Lezione 3 Scienze e tecniche psicologiche dello sviluppo e dell'educazione (laurea triennale) Anno accademico:
ARCHITETTURA DEI SISTEMI ELETTRONICI
AUTRONICA10.1 Autronica LEZIONE N° 10 Conversione da base 2 a base 8Conversione da base 2 a base 8 Conversione da base 2 a base 16Conversione da base 2.
AUTRONICA9.1 Autronica LEZIONE N° 9 Conversione da base 2 a base 8Conversione da base 2 a base 8 Conversione da base 2 a base 16Conversione da base 2 a.
La codifica dei numeri.
Conversione binario-ottale/esadecimale
A.S.E.6.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 6 CodiciCodici BCDBCD GRAYGRAY ASCIIASCII RIEPILOGO Aritmetica in Base 2RIEPILOGO Aritmetica.
Informatica Lezione 3 Psicologia dello sviluppo e dell'educazione (laurea magistrale) Anno accademico:
I sistemi di numerazione
Rappresentazione delle informazioni negli elaboratori L’entità minima di informazione all’interno di un elaboratore prende il nome di bit (binary digit.
Transcript della presentazione:

A.S.E.5.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 5 Calcolatori elettronici Rappresentazione dellinformazioneRappresentazione dellinformazione Architettura di un computerArchitettura di un computer Sistemi NUMERICISistemi NUMERICI Base 2, 3, 4, 5, 8, 10, 12, 16Base 2, 3, 4, 5, 8, 10, 12, 16 Conversione da base N a base 10Conversione da base N a base 10 Conversione da base 10 a base NConversione da base 10 a base N Aritmetica binariaAritmetica binaria Codici BCD e ASCIICodici BCD e ASCII

A.S.E.5.2 Richiami Segnale analogicoSegnale analogico Segnale campionatoSegnale campionato Segnale numericoSegnale numerico Segnale digitaleSegnale digitale Effetti dei disturbi e rumoreEffetti dei disturbi e rumore Sistema di elaborazione digitaleSistema di elaborazione digitale Digital ComputerDigital Computer

A.S.E.5.3 COMPUTER Schema a blocchi di un PCSchema a blocchi di un PC ProcessoreProcessore –CPUCentral Processing Unit –FPUFloating Pount Unit –MMUMemory Management Unit –Cache Interna Interfaccia del BusInterfaccia del Bus Cache esternaCache esterna RAMRandom Acces MemoryRAMRandom Acces Memory Controller del discoController del disco Hard DiskHard Disk Tastiera Monitor (CRT [Cathode-Ray Tube] LCD [Liquid Crystal Display])Tastiera Monitor (CRT [Cathode-Ray Tube] LCD [Liquid Crystal Display])

A.S.E.5.4 Sistema Numerico BaseBase Numero di simboli diversi di un sistema numericoNumero di simboli diversi di un sistema numerico Digit (Cifra)Digit (Cifra) ciascun simbolo = DIGIT denota una quantitàciascun simbolo = DIGIT denota una quantità BaseSistemaDigit 2binario 0, 1 3ternario 0, 1, 2 4quaternario 0, 1, 2, 3 5quinario 0, 1, 2, 3, 4 8ottale 0, 1, 2, 3, 4, 5, 6, 7 10decimale 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 12duodecimale 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B 16esadecimale 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

A.S.E.5.5 Notazione Posizionale Per rappresentare una quantità maggiore di quella associata a ciascun digit si usano più digit per formare un numeroPer rappresentare una quantità maggiore di quella associata a ciascun digit si usano più digit per formare un numero La posizione relativa di ciascun digit allinterno del numero è associata ad un pesoLa posizione relativa di ciascun digit allinterno del numero è associata ad un peso N = 587 = 5x x x10 0N = 587 = 5x x x10 0 Notazione posizionaleNotazione posizionale Rappresenta il polinomioRappresenta il polinomio

A.S.E.5.6 Rappresentazione completa Se si usano basi diverse, lo stesso numero rappresenta quantità diverse in funzione della base usataSe si usano basi diverse, lo stesso numero rappresenta quantità diverse in funzione della base usata Si deve quindi indicare la base utilizzataSi deve quindi indicare la base utilizzata EsempiEsempi

A.S.E.5.7 DecimaleBinarioOttaleEsadecimale A B C D E F Tabella

A.S.E.5.8 Conversione in base 10 Direttamente dalla rappresentazione posizinaleDirettamente dalla rappresentazione posizinale ESEMPIO 1ESEMPIO 1 –Convertire il numero 1101 in base 2 nellequivalente in base 10 –Convertire il numero D3F in base 16 nellequivalente in base 10

A.S.E.5.9 Conversione da base 10 a base n Tecnica delle divisioni successiveTecnica delle divisioni successive –Perché dividendo un numero per la sua base, il resto è lultimo digit

A.S.E.5.10 Esempio 1 Convertire il numero 52 in base 10 nellequivalente in base 2Convertire il numero 52 in base 10 nellequivalente in base 2 QuindiQuindi

A.S.E.5.11 Esempio 2 Convertire il numero in base 10 nellequivalente in base 16Convertire il numero in base 10 nellequivalente in base 16 QuindiQuindi (A) (A) (8) (8)4 14 (4) (E) (E)

A.S.E.5.12 Esempio 3 Convertire il numero in base 10 nellequivalente in base 8Convertire il numero in base 10 nellequivalente in base 8 QuindiQuindi

A.S.E.5.13 Numeri frazionari 1 Conversione da base b a base 10Conversione da base b a base 10 Non presenta problemiNon presenta problemi EsempioEsempio Convertire il numero binario Convertire il numero binario

A.S.E.5.14 Numeri frazionari 2 Conversione da base 10 a base bConversione da base 10 a base b La parte intera procedimento prima vistoLa parte intera procedimento prima visto Per la parte frazionaria in base b si haPer la parte frazionaria in base b si ha Moltiplicando per la base si haMoltiplicando per la base si ha La conversione può non avere fine, si arresta una volta raggiunta la precisione desiderataLa conversione può non avere fine, si arresta una volta raggiunta la precisione desiderata

A.S.E.5.15 Esempio Conversione da base 10 a base 16Conversione da base 10 a base 16

A.S.E.5.16 ERRORE Avendo arrestato la conversione al quarto passaggio si commette un certo erroreAvendo arrestato la conversione al quarto passaggio si commette un certo errore Lentità dellerrore si può valutare convertendo il risultato in base dieciLentità dellerrore si può valutare convertendo il risultato in base dieci

A.S.E.5.17 Binario => Ottale Dato un numero binarioDato un numero binario FattorizzandoFattorizzando

A.S.E.5.18 Metodo Basta raggruppare i digit del numero binario (bit) tre a tre e convertire ciascun gruppo nel corrispondente digit ottaleBasta raggruppare i digit del numero binario (bit) tre a tre e convertire ciascun gruppo nel corrispondente digit ottale EsempioEsempio NotaSono stati aggiunti degli zeri in testa e in coda affinché si avessero due gruppi di digit multipli di treNotaSono stati aggiunti degli zeri in testa e in coda affinché si avessero due gruppi di digit multipli di tre

A.S.E.5.19 Binario => Esadecimale Stesso procedimento del caso precedente, però ora si raggruppano i bit quattro a quattroStesso procedimento del caso precedente, però ora si raggruppano i bit quattro a quattro EsempioEsempio Per le conversioni ottale => binario e esadecimale => binario si opera in modo simile convertendo ciascun digit nel corrispondente numero binarioPer le conversioni ottale => binario e esadecimale => binario si opera in modo simile convertendo ciascun digit nel corrispondente numero binario

A.S.E.5.20 Ottale => Esadecimale (Esadecimale => Ottale) Conversione intermedia in binarioConversione intermedia in binario EsempioEsempio –Ottale => Esadecimale –Esadecimale => Ottale

A.S.E.5.21 Aritmetica binaria 1 Somma di due bitSomma di due bit x + yx + y s = Sommas = Somma c = Carry (RIPORTO)c = Carry (RIPORTO) EsempioEsempio xysc carry = 206

A.S.E.5.22 Aritmetica binaria 2 Sottrazione di due bitSottrazione di due bit x -yx -y d = Differenzad = Differenza b = Borrow (Prestito)b = Borrow (Prestito) EsempioEsempio xydb borrow = 89xysc

A.S.E.5.23 Aritmetica binaria 3 Prodotto di due bitProdotto di due bit a x ba x b p = Prodottop = Prodotto EsempioEsempio abp x 5 = 65

A.S.E.5.24 Numeri binari con segno Il numero massimo di bit usato da un calcolatore è noto e fissoIl numero massimo di bit usato da un calcolatore è noto e fisso Solitamente è : 4 o 8 o 16 o 32 (Word)Solitamente è : 4 o 8 o 16 o 32 (Word) 8 bit formano un Byte8 bit formano un Byte Non esiste un apposito simbolo per il segnoNon esiste un apposito simbolo per il segno Si usa il bit più significativo per indicare il segnoSi usa il bit più significativo per indicare il segno 0 = +0 = + 1 = -1 = - Si hanno varie tecniche di codificaSi hanno varie tecniche di codifica Modulo e segnoModulo e segno Complemento a 1Complemento a 1 Complemento a 2Complemento a 2 In traslazione ( cambia la codifica del segno)In traslazione ( cambia la codifica del segno)

A.S.E.5.25 BCD (Binary-Coded Decimal numbers) Necessità di rappresentare i numeri decimali in codice binarioNecessità di rappresentare i numeri decimali in codice binario 8421 BCD8421 BCD si codifica in binario ciascuna cifra decimale utilizzando i primi 10 numeri binari su 4 bitsi codifica in binario ciascuna cifra decimale utilizzando i primi 10 numeri binari su 4 bit EsempioEsempio [0100][0101][0011][0100][0101][0011] è possibile eseguire somme e sottrazioni in BCDè possibile eseguire somme e sottrazioni in BCD

A.S.E.5.26 Somma in BCD Si sommano 4 bit per voltaSi sommano 4 bit per volta –Se la somma è minore/uguale di 9 OK –Se la somma è maggiore di 9 si somma = >91010>

A.S.E.5.27 Codici alfanumerici Necessità di rappresentare caratteri alfabetici con un codice binarioNecessità di rappresentare caratteri alfabetici con un codice binario Alfabeto = 26 simboli diversiAlfabeto = 26 simboli diversi Necessità di maiuscole e minuscoleNecessità di maiuscole e minuscole Numeri = 10 simboliNumeri = 10 simboli Caratteri specialiCaratteri speciali Codice ASCII a 128 simboliCodice ASCII a 128 simboli UNICODE 16 bit simboli e ideogrammi (universale)UNICODE 16 bit simboli e ideogrammi (universale)

A.S.E.5.28 Codici alfanumerici 1

A.S.E.5.29 Caratteri di controllo

A.S.E.5.30 Bit di parità Necessità di individuare eventuali errori di trasmissioneNecessità di individuare eventuali errori di trasmissione Si aggiunge un bit (rappresentazione su 8 bit)Si aggiunge un bit (rappresentazione su 8 bit) Il numero complessivo di 1 è sempre pariIl numero complessivo di 1 è sempre pari SimboloCodiceASCIIParitàPARIParitàDISPARI T

A.S.E.5.31 Conclusioni Rappresentazione dellinformazioneRappresentazione dellinformazione Architettura di un computerArchitettura di un computer Sistemi NUMERICISistemi NUMERICI Base 2, 3, 4, 5, 8, 10, 12, 16Base 2, 3, 4, 5, 8, 10, 12, 16 Conversione da base N a base 10Conversione da base N a base 10 Conversione da base 10 a base NConversione da base 10 a base N Aritmetica binariaAritmetica binaria Codici BCD e ASCIICodici BCD e ASCII