A.S.E.9.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 9 Funzione XORFunzione XOR Enumerazione di funzioniEnumerazione di funzioni Reti logicheReti.

Slides:



Advertisements
Presentazioni simili
Aritmetica Binaria
Advertisements

Algebra Booleana Generalità
MULTIVIBRATORI BISTABILI
Dalla macchina alla rete
Elaborazione dei segnali mediante circuiti analogici o digitali.
Informatica Generale Marzia Buscemi IMT Lucca
Espressioni generali e MULTIPLEXER.
Algebra di Boole e Funzioni Binarie
(sommario delle lezioni in fondo alla pagina)
Algebra Booleana Capitolo 2.
Cap. II. Funzioni Logiche
Corso C Porte logiche.
Algebra di Boole.
Laboratorio ricerca-azione: Metodiche formative per adulti
Esercitazioni su circuiti combinatori
Reti Logiche Luciano Gualà home page
Reti Logiche A Lezione n.1.4 Introduzione alle porte logiche
Circuiti di memorizzazione elementari: i Flip Flop
Analisi e sintesi di circuiti combinatori
Sintesi con circuiti LSI-MSI
ESEMPI DI ARCHITETTURE DI DAC
Informatica 3 Codifica binaria.
Autronica LEZIONE N° 15 Reti sequenziali, concetto di memoria, anelli di reazione Esempio, Flip-Flop R-S Tecniche di descrizione Grafo orientato Diagramma.
ARCHITETTURA DEI SISTEMI ELETTRONICI
A.S.E.12.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 12 Esempio di minimizzazioneEsempio di minimizzazione Considerazioni su soluzioni diverseConsiderazioni.
A.S.E.25.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 25 Reti sequenziali sincronizzate complesseReti sequenziali sincronizzate complesse –Macchina.
A.S.E.18.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 18 Reti sequenzialiReti sequenziali Tecniche di descrizioneTecniche di descrizione –Tabella.
A.S.E.13.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 13 Somma e differenza di due numeri in C2Somma e differenza di due numeri in C2 Half AdderHalf.
A.S.E.6.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 6 Complemento a MComplemento a M Rappresentazione di numeri con segnoRappresentazione di numeri.
ARCHITETTURA DEI SISTEMI ELETTRONICI
A.S.E.12.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 12 Teorema di SHENNONTeorema di SHENNON Implicanti, Inclusivi, Implicanti PrincipaliImplicanti,
A.S.E.5.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 5 Rappresentazione di numeri con segnoRappresentazione di numeri con segno –Modulo e segno (MS)
ARCHITETTURA DEI SISTEMI ELETTRONICI
Corso di Informatica (Programmazione)
IFTS2002 Acq. Dati Remoti: INFORMATICA
Reti Combinatorie: sintesi
Dalla macchina alla rete: reti LLC
Algebra di Boole.
Unità Didattica 1 Algoritmi
Cos’è un problema?.
L'algebra di Boole e le sue applicazioni
Indice: L’algebra di Boole Applicazione dell’algebra di Boole
Analisi e sintesi di circuiti combinatori. Reti combinatorie.
Display a 7 segmenti Il display a 7 segmenti è un dispositivo composto da 7 diodi luminosi LED (Light-Emitting Diode) sagomati a forma di rettangolo o.
Reti Logiche Luciano Gualà
Reti Logiche Reti Logiche Corso di Architetture degli Elaboratori.
Algebra di Boole L’algebra di Boole è un formalismo che opera su variabili (dette variabili booleane o variabili logiche o asserzioni) che possono assumere.
Algebra di Boole e Funzioni Binarie
Cassaforte Asincrona di Mealy
INFORMATICA MATTEO CRISTANI. INDICE CICLO DELLE LEZIONI LEZ. 1 INTRODUZIONE AL CORSO LEZ. 2 I CALCOLATORI ELETTRONICI LEZ. 3 ELEMENTI DI TEORIA DELL INFORMAZIONE.
Sistema di regolazione del volume Il progetto consiste nella sintesi e nella realizzazione attraverso Xilinx di un sistema per la regolazione del volume,
ELETTRONICA GEORGE BOOLE FUNZIONI LOGICHE Lezione N° 1
Una rete sequenziale asincrona ha due ingressi C,X e un’uscita Z. I segnali C,X non cambiano mai di valore contemporaneamente. Il segnale C è periodico;
Reti Logiche A Lezione xx.x Dispositivi Programmabili
Teoria dei sistemi Autore: LUCA ORRU'.
FONDAMENTI DI INFORMATICA
ARCHITETTURA DEI SISTEMI ELETTRONICI
Università degli studi di Parma Dipartimento di Ingegneria dell’Informazione Politecnico di Milano © 2001/02 - William Fornaciari Reti Logiche A Lezione.
ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 11 Reti sequenzialiReti sequenziali BistabileBistabile Flip - Flop S – RFlip - Flop S – R 11.1A.S.E.
ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 8 Enumerazione di funzioniEnumerazione di funzioni Reti logicheReti logiche Reti logiche combinatorieReti.
Algebra di Boole.
A.S.E.12.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 12 Mappe di KarnaughMappe di Karnaugh Sintesi ottimaSintesi ottima Esempio di minimizzazioneEsempio.
Algebra di Boole L’algebra di Boole è un formalismo che opera su variabili (dette variabili booleane o variabili logiche o asserzioni) che possono assumere.
A.S.E.18.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 18 Reti sequenzialiReti sequenziali –concetto di memoria –anelli di reazione EsempioEsempio.
A.S.E.10.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 10 Mappe di KarnaughMappe di Karnaugh ImplicantiImplicanti Implicanti principaliImplicanti principali.
Autronica LEZIONE N° 14 ALGEBRA BOOLEANA Postulati
A.S.E.11.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 11 Funzione XORFunzione XOR Enumerazione di funzioniEnumerazione di funzioni Reti logicheReti.
A.S.E.16.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 16 Porte Tri StatePorte Tri State Reti sequenzialiReti sequenziali –concetto di memoria –anelli.
La tabella delle verità è un modo per rappresentare il comportamento di una funzione combinatoria La tabella delle verità ha due tipi di colonne: colonne.
Introduzione a Logisim
Transcript della presentazione:

A.S.E.9.1 ARCHITETTURA DEI SISTEMI ELETTRONICI LEZIONE N° 9 Funzione XORFunzione XOR Enumerazione di funzioniEnumerazione di funzioni Reti logicheReti logiche Reti logiche combinatorieReti logiche combinatorie Reti logiche sequenzialiReti logiche sequenziali SimboliSimboli Concetto di cicloConcetto di ciclo Concetto di minimizzazione (funzione costo)Concetto di minimizzazione (funzione costo) Realizzazioni diverse della stessa funzioneRealizzazioni diverse della stessa funzione

A.S.E.9.2 Richiami Esempi di applicazione dei vari teoremiEsempi di applicazione dei vari teoremi Passaggi da forma SP a PS e viceversaPassaggi da forma SP a PS e viceversa Insieme funzionalmente completoInsieme funzionalmente completo Funzione NANDFunzione NAND Funzione NORFunzione NOR Funzioni AND, OR e NOTFunzioni AND, OR e NOT Funzioni NAND e NORFunzioni NAND e NOR

A.S.E.9.3 Funzioni complesse 1 Loperatore XOR, OR ESCLUSIVO è:Loperatore XOR, OR ESCLUSIVO è: DefinizioneDefinizionexyu

A.S.E.9.4 Funzioni complesse 2 Loperatore XNOR, NOR ESCLUSIVO è:Loperatore XNOR, NOR ESCLUSIVO è: DefinizioneDefinizionexyu

A.S.E.9.5 Enumerazione di funzioni 1 Quesito:Quesito: Quante funzioni di due variabili si posso realizzare?Quante funzioni di due variabili si posso realizzare? Risposta:Risposta: quante sono le possibili configurazioni diverse di quattro elementi binari (cioè 16). In generale:quante sono le possibili configurazioni diverse di quattro elementi binari (cioè 16). In generale:xy f0f0f0f0 f1f1f1f1 f2f2f2f2 f3f3f3f3 f4f4f4f4 f5f5f5f5 f6f6f6f6 f7f7f7f7 f8f8f8f8 f9f9f9f9 fAfAfAfA fBfBfBfB fCfCfCfC fDfDfDfD fEfEfEfE fFfFfFfF

A.S.E.9.6 Enumerazione di funzioni 2 Ruotando di 90˚ la tabellaRuotando di 90˚ la tabella

A.S.E.9.7 Reti Logiche Sistema elettronico che ha in ingresso segnali digitali e fornisce in uscita segnali digitali secondo leggi descrivibili con lalgebra BooleanaSistema elettronico che ha in ingresso segnali digitali e fornisce in uscita segnali digitali secondo leggi descrivibili con lalgebra Booleana R.L. è unidirezionaleR.L. è unidirezionale R. L. a b nw y x

A.S.E.9.8 Tipi di reti Reti COMBINATORIEReti COMBINATORIE In qualunque istante le uscite sono funzione del valore che gli ingressi hanno in quellistanteIn qualunque istante le uscite sono funzione del valore che gli ingressi hanno in quellistante Il comportamento (uscite in funzione degli ingressi) è descritto da una tabellaIl comportamento (uscite in funzione degli ingressi) è descritto da una tabella Reti SEQUENZIALIReti SEQUENZIALI In un determinato istante le uscite sono funzione del valore che gli ingressi hanno in quellistante e i valori che hanno assunto precedentementeIn un determinato istante le uscite sono funzione del valore che gli ingressi hanno in quellistante e i valori che hanno assunto precedentemente La descrizione è più complessaLa descrizione è più complessa Stati InterniStati Interni Reti dotate di MEMORIAReti dotate di MEMORIA

A.S.E.9.9 Simboli Simboli Rete Logica =>scomponibile in blocchiRete Logica =>scomponibile in blocchi Blocchi base = simboli degli operatori elementariBlocchi base = simboli degli operatori elementari Rappresentazione delle funzioni logiche mediante schemiRappresentazione delle funzioni logiche mediante schemi RAPPRESENTAZIONE SCHEMATICARAPPRESENTAZIONE SCHEMATICA

A.S.E.9.10 Porte logiche Rappresentazione circuitale delle funzioni logicheRappresentazione circuitale delle funzioni logiche –AND –OR –NOT X1X1 X2X2 X3X3 Y X1X1 X2X2 Y XY

A.S.E.9.11 Esempio Schema simbolico della funzioneSchema simbolico della funzione –RETE LOGICA RETELOGICARETELOGICA X1X1 XnXn X2X2 U = f(X 1, X 2,…., X n ) X2X2 X1X1 X3X3 U

A.S.E.9.12 Altre porte logiche NANDNAND NORNOR X Z Y X Z Y XZY XZY

A.S.E.9.13 Proprietà della porta NAND (NOR) Utilizzando solamente porte NAND (NOR) è possibile realizzare qualunque rete logicaUtilizzando solamente porte NAND (NOR) è possibile realizzare qualunque rete logica NOTNOT ANDAND OROR X Y = X X Z Y = XZ X Z Y = X+Z

A.S.E.9.14 OR Esclusivo Realizzazione dellOR EsclusivoRealizzazione dellOR Esclusivo X Y X Y U XYU U

A.S.E.9.15 Ciclo DefinizioneDefinizione Ciclo: Percorso chiuso che attraversa k blocchi (k 1) tutti nella loro direzione di funzionamentoCiclo: Percorso chiuso che attraversa k blocchi (k 1) tutti nella loro direzione di funzionamento OsservazioniOsservazioni Tutte le reti viste sono prive di cicliTutte le reti viste sono prive di cicli I blocchi base combinatori sono privi di cicliI blocchi base combinatori sono privi di cicli Le funzioni descrivibili dalle tabelle di verità sono tutte prive di cicli (le uscite sono funzione dei solo ingressi)Le funzioni descrivibili dalle tabelle di verità sono tutte prive di cicli (le uscite sono funzione dei solo ingressi) ConclusioneConclusione Tutte le reti logiche composte di blocchi combinatori e prive di cicli sono rei combinatorieTutte le reti logiche composte di blocchi combinatori e prive di cicli sono rei combinatorie

A.S.E.9.16 Sintesi di reti combinatorie SintesiSintesi data la descrizione ai terminali di una rete combinatoriadata la descrizione ai terminali di una rete combinatoria ottenere la struttura in blocchi logici e le relative interconnessioniottenere la struttura in blocchi logici e le relative interconnessioni OsservazioniOsservazioni il funzionamento della rete deve essere possibile descriverlo mediante una tabella di veritàil funzionamento della rete deve essere possibile descriverlo mediante una tabella di verità non esiste una sola realizzazionenon esiste una sola realizzazione per poter scegliere fra le varie soluzioni è necessario definire il parametro da ottimizzareper poter scegliere fra le varie soluzioni è necessario definire il parametro da ottimizzare Funzione COSTOFunzione COSTO (numero di blocchi base, ritardo ingresso uscita, uso di particolari blocchi, ……..)(numero di blocchi base, ritardo ingresso uscita, uso di particolari blocchi, ……..) VEDERE ESEMPI SUCCESSIVIVEDERE ESEMPI SUCCESSIVI

A.S.E.9.17 Esempio di funzione Data la funzione definita dalla Tabella di Verità:Data la funzione definita dalla Tabella di Verità: abcz Si ha:

A.S.E.9.18 Schemi relativi 1 a b c z a a b b c c

A.S.E.9.19 Schemi relativi 2 a b c z

A.S.E.9.20 Schemi relativi 3 a b c z

A.S.E.9.21 Schemi relativi 4 a b c z a b c z

A.S.E.9.22 Conclusioni Funzione XORFunzione XOR Enumerazione di funzioniEnumerazione di funzioni Reti logicheReti logiche Reti logiche combinatorieReti logiche combinatorie Reti logiche sequenzialiReti logiche sequenziali SimboliSimboli EsempiEsempi Concetto di cicloConcetto di ciclo Realizzazioni diverse della stessa funzioneRealizzazioni diverse della stessa funzione

A.S.E.9.23 Quesiti Ricavare le funzioni logiche di Z 1 e Z 2Ricavare le funzioni logiche di Z 1 e Z 2 X2X2 X1X1 X3X3 Z1Z1 Z2Z2

A.S.E.9.24 Suggerimenti Scrivere la tabella di verità comprensiva delle funzioni intermedie a, b e cScrivere la tabella di verità comprensiva delle funzioni intermedie a, b e c X2X2 X1X1 X3X3 Z1Z1 Z2Z2 a c b