Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9.

Slides:



Advertisements
Presentazioni simili
Tecniche di analisi dei dati e impostazione dell’attività sperimentale
Advertisements

Statistica Economica I
L’Analisi della Varianza ANOVA (ANalysis Of VAriance)
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
Come organizzare i dati per un'analisi statistica al computer?
Dipartimento di Economia
Tecniche di analisi dei dati e impostazione dellattività sperimentale Relazioni tra variabili: Correlazione e Regressione.
Analisi dei dati per i disegni ad un fattore
La regressione lineare trivariata
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 10.
Regressione logistica
Metodi Quantitativi per Economia, Finanza e Management Lezione n°6.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8
Test Statistici Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°5.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 11.
redditività var. continua classi di redditività ( < 0 ; >= 0)
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°7.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°8.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°10.
Ipotesi e proprietà dello stimatore Ordinary Least Squares (OLS)
STATISTICA 6.0: REGRESSIONE LINEARE
IL MODELLO DI REGRESSIONE MULTIPLA
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA: test sui parametri e scelta del modello (parte 3) Per effettuare test di qualsiasi natura è necessaria.
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE MULTIPLA (parte 1)
MODELLO DI REGRESSIONE LINEARE MULTIPLA
Analisi della varianza (a una via)
La logica della regressione
STATISTICA a.a METODO DEI MINIMI QUADRATI REGRESSIONE
Analisi bivariata Passiamo allo studio delle relazioni tra variabili
Modello di regressione lineare semplice
STATISTICA PER LE DECISIONI DI MARKETING
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°6.
Regressione logistica
Esercizio Regressione DATI Per un campione casuale di 82 clienti di un'insegna della GDO, sono disponibili le seguenti variabili, riferite ad un mese di.
DATA MINING PER IL MARKETING
DATA MINING PER IL MARKETING
Metodi Quantitativi per Economia, Finanza e Management Lezione n°11 Regressione lineare multipla: Analisi di influenza. Case Study.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9 Regressione lineare multipla: la stima del modello e la sua valutazione, metodi automatici.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
La verifica d’ipotesi Docente Dott. Nappo Daniela
Domande riepilogative per l’esame
Lezione B.10 Regressione e inferenza: il modello lineare
Strumenti statistici in Excell
IL CAMPIONE.
redditività var. continua classi di redditività ( < 0 ; >= 0)
Metodi Quantitativi per Economia, Finanza e Management Lezione n°10 Regressione lineare multipla: la valutazione del modello, metodi automatici di selezione.
Analisi Multivariata dei Dati
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°7.
Regressione lineare - Esercizi
Regressione logistica Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°10.
Regressione lineare - Esercizi Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°9.
Regressione lineare Metodi Quantitativi per Economia, Finanza e Management Esercitazione n°8.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°13.
DATA MINING PER IL MARKETING (63 ore) Marco Riani Sito web del corso
Regressione semplice e multipla in forma matriciale Metodo dei minimi quadrati Stima di beta Regressione semplice Regressione multipla con 2 predittori.
Analisi delle osservazioni
INFERENZA NEL MODELLO DI REGRESSIONE LINEARE SEMPLICE
Regressione: approccio matriciale Esempio: Su 25 unità sono stati rilevati i seguenti caratteri Y: libbre di vapore utilizzate in un mese X 1: temperatura.
Statistica per l’economia e l’impresa Capitolo 4 MODELLO DI REGRESSIONE LINEARE SEMPLICE.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9 Regressione lineare multipla: le ipotesi del modello, la stima del modello.
Metodi Quantitativi per Economia, Finanza e Management Lezione n°9 Regressione lineare multipla: le ipotesi del modello, la stima del modello.
Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9
Transcript della presentazione:

Metodi Quantitativi per Economia, Finanza e Management Lezione n° 9

Il modello di regressione lineare 1.Introduzione ai modelli di regressione – Case Study 2.Obiettivi 3.Le ipotesi del modello 4.La stima del modello 5.La valutazione del modello 6.Commenti

La classificazione dei clienti/prospect in termini predittivi Case Study – Club del Libro

Il problema di analisi CAT 1CAT n anzianità

Lobiettivo dellanalisi Prevedere la redditivita del socio fin dalle prime evidenze

Limpostazione del problema Redditività = ricavi - costi F F redditività var. continua F classi di redditività ( = 0)

I dati di input F Y :Redditività consolidata F X :# ordini pagato ordini pagato rateale mensile sesso (dicotomica) area (dicotomiche) # liste

Il percorso di analisi Predisposizione Banca Dati Costruzione Var. Obiettivo Analisi Preliminari Stima del Modello Validazione Implementazione

Analisi preliminari F F lo studio della distribuzione F lo studio della concentrazione F la struttura di correlazione

Limpostazione del problema F F Redditività var. continua F F Redditività var. dicotomica Regressione LineareRegressione Logistica

Il modello di regressione lineare 1.Introduzione ai modelli di regressione – Case Study 2.Obiettivi 3.Le ipotesi del modello 4.La stima del modello 5.La valutazione del modello 6.Commenti

I modelli di regressione Modelli di dipendenza per la rappresentazione di relazioni non simmetriche tra le variabili Y variabile dipendente (variabile target da spiegare) X 1,…,X p variabili indipendenti (variabili esplicative o regressori)

Il modello di regressione lineare Si vuole descrivere la relazione tra Y e X 1,…,X p con una funzione lineare se p=1 osservazioni in uno spazio a due dimensioni (i=1,…,n) se p>1 osservazioni in uno spazio a p+1 dimensioni (i=1,…,n)

Il modello di regressione lineare Y X se p=1 spazio a due dimensioni retta di regressione lineare semplice

Il modello di regressione lineare se p>1 spazio a p+1 dimensioni retta di regressione lineare multipla Y X1 X2

Il modello di regressione lineare Obiettivi Esplicativo - Stimare linfluenza dei regressori sulla variabile target. Predittivo - Stimare il valore non osservato della variabile target in corrispondenza di valori osservati dei regressori. Comparativo - Confrontare la capacità di più regressori, o di più set di regressori, di influenzare il target (= confronto tra modelli di regressione lineare diversi).

n unità statistiche vettore colonna (nx1) di n misurazioni su una variabile continua (Y) matrice (nxp) di n misurazioni su p variabili quantitative (X 1,…,X p ) la singola osservazione è il vettore riga (y i,x i1,x i2,x i3,…,x ip ) i=1,…,n Il modello di regressione lineare Le ipotesi del modello

Equazione di regressione lineare multipla i-esima oss. su Y i-esima oss. su X 1 errore relativo alli-esima oss. intercettacoefficiente di X1 La matrice X=[1,X 1,…,X p ] è detta matrice del disegno. Il modello di regressione lineare Le ipotesi del modello

Lerrore presente nel modello si ipotizza essere di natura casuale. Può essere determinato da: variabili non considerate problemi di misurazione modello inadeguato effetti puramente casuali Il modello di regressione lineare Le ipotesi del modello

1.Errori a media nulla 2.Errori con varianza costante (omoschedasticità) 3.Errori non correlati (per ogni ij) 4.Errori con distribuzione Normale * 1 – 3 hp deboli 1 – 4 hp forti Il modello di regressione lineare Le ipotesi del modello

Da un punto di vista statistico Y è un vettore aleatorio di cui si osserva una specifica realizzazione campionaria hp sulla distribuzione X è una matrice costante con valore noto no hp sulla distribuzione beta è un vettore costante non noto lerrore è un vettore aleatorio di cui si osserva una specifica realizzazione campionaria hp sulla distribuzione Il modello di regressione lineare Le ipotesi del modello

ogni osservazione di Y è uguale ad una combinazione lineare dei regressori con pesi=coefficienti beta + un termine di errore in media Y può essere rappresentata come funzione lineare delle sole (X 1,…,X p ) Il modello di regressione lineare Le ipotesi del modello

Si vuole trovare la retta lineare migliore data la nuvola di punti Y X Il modello di regressione lineare La stima del modello

Equazione teorica coefficienti non noti Equazione stimata coefficienti stimati (una delle infinite rette possibili) stime dei coefficienti errore di previsione previsione Il modello di regressione lineare La stima del modello

Stimando la retta di regressione si commette un errore di previsione: Metodo dei Minimi Quadrati Y X VALORE STIMATO VALORE OSS. ERRORE Il modello di regressione lineare La stima del modello

Obiettivo trovare la miglior approssimazione lineare della relazione tra Y e X 1,…,X p (trovare le stime dei parametri beta che identificano la migliore retta di regressione) Metodo dei minimi quadrati lo stimatore LS è la soluzione al problema Il modello di regressione lineare La stima del modello

Lo stimatore dei Minimi Quadrati: LS è funzione di Y e X ha media ha varianza Il modello di regressione lineare La stima del modello

Proprietà dello stimatore LS non distorto consistente (se valgono certe hp su XX) coincide con lo stimatore di max verosimiglianza sotto hp forti BLUE (Best Linear Unbiased Estimator) Il modello di regressione lineare La stima del modello

Scomposizione della varianza SST=SSE+SSM total sum of squares variabilità di Y error sum of squares variabilità dei residui model sum of squares variabilità spiegata Il modello di regressione lineare La stima del modello

Indicatori sintetici di bontà del Modello R-quadro adjusted OK valori alti R-quadro OK valori alti Il modello di regressione lineare La stima del modello Test F OK p-value con valori bassi

R-quadro= SSM/SST misura la % di variabilità di Y spiegata dal modello = capacità esplicativa del modello misura la variabilità delle osservazioni intorno alla retta di regressione. SSM=0 (R-quadro=0) il modello non spiega SSM=SST (R-quadro=1) OK R-quadro adjusted= [1-(1-SSM/SST)]/(n-1)(n-p-1) come R-quadro ma indipendente dal numero di regressori combina adattabilità e parsimonia Il modello di regressione lineare La stima del modello

Test F per valutare la significatività congiunta dei coefficienti ipotesi nulla statistica test valutazione se p-value piccolo (rifiuto lhp di coefficienti tutti nulli) il modello ha buona capacità esplicativa Il modello di regressione lineare La stima del modello

Indicatori di bontà del Modello Il modello di regressione lineare La stima del modello Y X Y X Y X R-SQUARE=0.7 F con p-value piccolo R-SQUARE=0.7 F con p-value piccolo R-SQUARE=0.7 F con p-value piccolo

Test t per valutare la significatività dei singoli coefficienti ipotesi nulla (j=1,…,p) valutazione il coefficiente è significativo (significativamente diverso da 0) se il corrispondente p- value è piccolo (ossia, rifiuto lipotesi di coefficiente nullo) il regressore a cui il coefficiente è associato è rilevante per la spiegazione del fenomeno statistica test Il modello di regressione lineare La stima del modello