Urti Si parla di urti quando due punti materiali (o due sistemi di punti materiali) si scambiano energia e quantità di moto in un tempo estremamente breve. Le forze agenti sulle particelle interagenti sono estremamente intense (forze impulsive!!)
Fasi dell’urto fase iniziale prima dell’urto: in cui esiste un moto imperturbato. fase dell’urto: La durata di questa fase è piuttosto piccola rispetto alla durata complessiva del moto. Si produce quindi una brusca variazione nel moto dei due sistemi interagenti È caratterizzata dalla presenza di forze molto intense. Poiché l’urto è istantaneo, le particelle, nella fase dell’urto, non si spostano. fase successiva all'urto: dopo l'interazione, lo stato di moto continua ad essere di nuovo imperturbato. Il CM si trova sempre sul segmento che congiunge le due particelle. L’urto avviene nel CM
Impulso della forza F12 F21 Durante l’urto le forze che agiscono sulle particelle interagenti hanno una intensità molto grande (tendente all’infinito). Sono difficili da descrivere. Quello che è importante è l’effetto prodotto Consideriamo una delle due particelle interagenti La particella 1 La sua variazione di quantità di moto, prodotta dalla forza F12, vale: 1 2 Si definisce Impulso della forza F12 la quantità: Rappresentato dall’area sotto la curva La stessa variazione di quantità di moto può essere ottenuta con una forza molto intensa che dura molto poco, o da una forza meno intensa che agisce per un tempo piu lungo.
Forza media F12 F21 La forza media è la forza costante che, agendo nell’intervallo tra t1 e t2, provoca la stessa variazione di quantità di moto della forza F12: 1 2 L’impulso in questo caso è rappresentato dall’area del rettangolo di base Dt e altezza F12m l’area del rettangolo di base Dt e altezza F12m è uguale all’area sotto la curva dell’intensità della forza in funzione del tempo
Una pallottola da 30 g, con velocità iniziale di 500 m/s penetra per 12 cm in una parete di muratura prima di fermarsi Di quanto si riduce l’energia meccanica della pallottola? Qual è la forza media che ha agito sulla pallottola mentre penetrava nella parete? Quanto tempo ha impiegato la pallottola per fermarsi? Applicazione Prima Usiamo il sistema di riferimento del Laboratorio per descrivere il moto: la parete è ferma in tale sistema il sistema di riferimento è inerziale x Dopo Le forze agenti sono: La forza peso (fa lavoro nullo) La Normale (fa lavoro nullo) La forza di attrito(dinamico) L’energia meccanica totale coincide con l’energia cinetica. Nell’ipotesi di un moto orizzontale come mostrato in figura, non c’è variazione dell’energia potenziale della forza peso Circa 100 mila volte il peso
Per calcolaci tempo ha impiegato dalla pallottola per fermarsi, valutiamo l’impulso della forza. Applicazione Prima x La quantità di moto finale è nulla Quella iniziale ha solo la componente x Anche l’impulso avrà solo la componente x Dopo Il proiettile impiega 3.2 centesimi di secondo per fermarsi Questo semplice esempio mostra come le forze negli urti siano molto intense I tempi dell’interazione siano piuttosto piccoli
Soluzione dei problemi di urto Sistema isolato Consideriamo dapprima un urto, in cui le particelle interagenti sono così lontane da altre particelle da poter considerare nulle le forze esterne (sistema isolato) Dalla I equazione cardinale dei sistemi ricaviamo che la quantità di moto totale del sistema di particelle interagenti si deve conservare. F12 F21 1 2 Sistema delle particelle interagenti
Soluzione dei problemi di urto in presenza di forze esterne Consideriamo ora il caso in cui le particelle interagenti durante l’urto sono sottoposte anche ad alcune forze esterne. La variazione della quantità di moto subita da ciascuna particelle tra t1 e t2 sarà data da: F12 F21 F1est 1 2 F2est Sistema delle particelle interagenti Se durante l’urto la forza esterna è trascurabile rispetto a quella interna Bisogna assicurarsi che le forze esterne, durante l’urto non diventino impulsive
Forze esterne impulsive Quali forze mi possono dare fastidio? Quali forze durante l’urto possono diventare impulsive? Tutte quelle forze per cui non abbiamo travato una espressione per calcolare il loro valore! Forze che conservano una intensità finita durante l’urto: Forza peso Forza elastica Gravitazione universale Resistenza passiva Forze che possono diventare impulsive durante l’urto: Componente normale della reazione vincolare N Forze di attrito (attraverso il loro legame con la normale N) Tensione nelle funi
Conservazione della quantità di moto Se le forze esterne sono nulle o trascurabili rispetto a quelle impulsive interne Si conserva la quantità di moto del sistema delle particelle interagenti. v2 v1 1 2 F21 F12 1 2 v’1 v’2 Conoscendo le velocità iniziali, si possono determinate le velocità delle particelle dopo l’urto? 3 equazioni con 6 incognite 1 2 Sistema delle particelle interagenti
Istante iniziale e finale nello studio dei processi d’urto Se le forze esterne sono assenti allora Le due particelle sono sottoposte solo all’azione delle forze interne che esistono solo durante l’urto. Sia prima che dopo l’urto non sono soggette a forze: si muovono di moto rettilineo uniforme, con quantità di moto costante. i e f possono essere due istanti qualsiasi prima e dopo l’urto. In presenza di forze esterne invece i e f devono essere l’istante immediatamente prima dell’urto e quello immediatamente dopo l’urto. Se si allunga l’intervallo di osservazione La variazione della quantità di moto prodotta dalla forza esterna potrebbe non essere più trascurabile rispetto a quella prodotta dalla forza interna. Non c’è più conservazione della quantità di moto
Moto del centro di massa in un processo d’urto Se nell’urto si conserva la quantità di moto Il centro di massa si muove con velocità costante: Il Sistema di riferimento del CM è un sistema di riferimento inerziale Molto utile per risolvere i problemi d’urto.
Conservazione parziale della quantità di moto Se tra le forze esterne agenti sulle particelle che si urtano c’è una forza che, durante l’urto potrebbe diventare impulsiva (reazione vincolare, tensione, etc) Non è lecito applicare la conservazione della quantità di moto. In alcuni casi però è possibile stabilire a priori la direzione della forza impulsiva Vuol dire che si conserveranno le componenti della quantità di moto nelle direzioni perpendicolari a quella della forza impulsiva
Urti elastici o anelastici Dal punto di vista dell’energia gli urti si classificano Elastici Se l’energia cinetica si conserva Anelastici Quando non si conserva l’energia cinetica Nota Bene: Solo l’energia cinetica è importante. Infatti: Se non ci sono forze esterne non c’è energia potenziale Comunque durante l’urto la posizione delle particelle non varia, non varia neppure l’energia potenziale. Nel caso di urti anelastici, l’energia cinetica può sia diminuire (viene trasformata in altre forme di energia: energia interna dei corpi, riscaldamento dei corpi) ma anche aumentare (l’energia interna dei corpi viene trasformata in energia meccanica: esplosioni) Urti completamente anelastici Quando viene persa tutta l’energia cinetica che è possibile perdere compatibilmente con la conservazione della quantità di moto. N.B. non c’è alcuna correlazione tra la conservazione dell’energia e quella della quantità di moto
Urti completamente anelastici Sono quegli urti in cui si perde tutta l’energia cinetica che è possibile perdere compatibilmente con la conservazione della quantità di moto Le due particelle nello stato finale hanno velocità nulla rispetto al centro di massa Poiché al momento dell’urto, entrambe le particelle si trovavano nella posizione del centro di massa Le due particelle emergono dall’urto unite insieme e si muovono con la velocità del CM
Soluzione dell’urto completamente anelastico Consideriamo un urto completamente anelastico in cui si conserva la quantità di moto (non ci sono forze esterne impulsive) A cui possiamo aggiungere l’ulteriore condizione: Abbiamo tre equazioni con tre incognite Il problema ammette soluzione Velocità del CM
Il pendolo balistico Veniva usato per misurare la velocità dei proiettili sparati da un’arma da fuoco. Consiste in un blocco di legno (o sacco di sabbia) appeso al soffitto con una corda di lunghezza l Il proiettile penetra nel blocco di legno e si ferma rispetto al blocco (l’urto è completamente anelastico) Blocco e proiettile, insieme, dopo l’urto cominceranno ad oscillare come un pendolo Misurando l’ampiezza delle oscillazioni, dalla conoscenza degli altri parametri in gioco, massa del blocco, massa del proiettile e lunghezza del pendolo, è possibile risalire alla velocità iniziale del proiettile
Applicazione Una pallottola da m=30 g, viene sparata orizzontalmente con velocità di 500 m/s contro un blocco di legno di massa M=4kg appeso ad una fune di lunghezza L=2m. La pallottola si conficca nel blocco e forma un tutt’uno con esso. Determinare la perdita di energia meccanica nell’urto. Determinare l’elongazione massima del pendolo Se la pallottola è penetrata nel pendolo per un tratto di 3cm, stimare la forza media che ha frenato la pallottola rispetto al blocco e la durata dell’urto Verificare che lo spostamento subito dal pendolo durante l’urto è trascurabile. Valutare infine la tensione nella fune subito prima e subito dopo l’urto.
Il pendolo balistico: analisi delle forze Le forze peso non sono impulsive La tensione potrebbe diventare impulsiva durante l’urto. Non possiamo imporre la conservazione della quantità di moto Poiché l’urto dura poco, la posizione del pendolo durante l’urto non varia Il filo durante l’urto resta verticale Tutte le forze esterne durante l’urto sono verticali Si conserva la componente della quantità di moto orizzontale. In particolare:
Energia persa nell’urto Quasi tutta l’energia cinetica viene persa durante l’urto a causa delle forze di attrito che si oppongono alla penetrazione del proiettile nel blocco di legno. Il lavoro della altre forze agenti o è nullo o è trascurabile Dx = penetrazione
Applicazione Una pallottola da m=30 g, viene sparata orizzontalmente con velocità di 500 m/s contro un blocco di legno di massa M=4kg appeso ad una fune di lunghezza L=2m. La pallottola si conficca nel blocco e forma un tutt’uno con esso. Determinare la perdita di energia meccanica nell’urto. Determinare l’elongazione massima del pendolo Se la pallottola è penetrata nel pendolo per un tratto di 3cm, stimare la forza media che ha frenato la pallottola rispetto al blocco e la durata dell’urto verificare che lo spostamento subito dal pendolo durante l’urto è trascurabile. Valutare infine la tensione nella fune subito prima e subito dopo l’urto.
II fase oscillazione L’oscillazione avviene sotto l’azione della forza peso (conservativa) e della tensione.
Applicazione Una pallottola da m=30 g, viene sparata orizzontalmente con velocità di 500 m/s contro un blocco di legno di massa M=4kg appeso ad una fune di lunghezza L=2m. La pallottola si conficca nel blocco e forma un tutt’uno con esso. Determinare la perdita di energia meccanica nell’urto. Determinare l’elongazione massima del pendolo Se la pallottola è penetrata nel pendolo per un tratto di 3cm, stimare la forza media che ha frenato la pallottola rispetto al blocco e la durata dell’urto Verificare che lo spostamento subito dal pendolo durante l’urto è trascurabile. Valutare infine la tensione nella fune subito prima e subito dopo l’urto.
Applicazione Prima dell’urto: Una pallottola da m=30 g, viene sparata orizzontalmente con velocità di 500 m/s contro un blocco di legno di massa M=4kg appeso ad una fune di lunghezza L=2m. La pallottola si conficca nel blocco e forma un tutt’uno con esso. Valutare infine la tensione nella fune subito prima e subito dopo l’urto. Applicazione y Prima dell’urto: Subito dopo l’urto, il pendolo è rimasto nella stessa posizione, ma si sta muovendo con velocità Vx: Proiettando su un asse verticale:
Proiettile sparato dall’alto La forza FMn è impulsiva (forza interna) Poiché la lunghezza della corda ideale non varia La tensione T ha, durante l’urto, una intensità comparabile con la forza FMn La tensione T è impulsiva Se la corda non è sufficientemente robusta si può rompere (viene superato il carico di rottura) Non si ha conservazione della quantità di moto nella direzione verticale
Urto in due dimensioni Consideriamo un urto in cui una della due particelle è ferma (senza forze esterne) Particella 1 proiettile Particella 2 bersaglio b parametro d’urto La retta di azione della velocità v1 e il punto P2 definiscono un piano Le forze di interazione sono lungo la congiungente Quindi contenute nel piano Non c’è moto perpendicolarmente al piano precedentemente individuato (accelerazione nulla, velocità iniziale nulla) L’urto è piano. Se l’urto è elastico si può aggiungere: