Circuiti combinatori e sequenziali

Slides:



Advertisements
Presentazioni simili
Training On Line - CONP. 2 Richiesta Da Menu: Conferimenti ad inizio anno termico > Agosto > Pluriennali > Nuova Richiesta Si accede alla pagina di Richiesta.
Advertisements

Numeri a 100 Electronic flashcard. 1 uno ritorno.
Algebra Booleana Generalità
Dipartimento di Ingegneria Idraulica e Ambientale - Universita di Pavia 1 Caduta non guidata di un corpo rettangolare in un serbatoio Velocità e rotazione.
Algebra di Boole Casazza Andrea 3EA I.I.S. Maserati.
I numeri naturali ….. Definizione e caratteristiche
Elaborazione dei segnali mediante circuiti analogici o digitali.
1 MeDeC - Centro Demoscopico Metropolitano Provincia di Bologna - per Valutazione su alcuni servizi erogati nel.
Mat_Insieme Lavoro di Gruppo Prodotti Notevoli
II° Circolo Orta Nova (FG)
Espressioni generali e MULTIPLEXER.
1 Pregnana Milanese Assessorato alle Risorse Economiche Bilancio Preventivo P R O P O S T A.
(sommario delle lezioni in fondo alla pagina)
Frontespizio Economia Monetaria Anno Accademico
Cap. II. Funzioni Logiche
Algebra di Boole.
2ab2 2b4 4x − 2y a 3b2y3 3b2y3b Definizione e caratteristiche
Associazione Nazionale Medici Cardiologi Ospedalieri
Esercitazioni su circuiti combinatori
XXIV Congresso ACOI 2005 Montecatini Terme Maggio 2005
Virtual CPU - Eniac Dr.ssa Veronica Marchetti
Analisi e sintesi di circuiti combinatori
Varianza campionaria Errore standard della varianza campionaria
Campionamento casuale semplice
Canale A. Prof.Ciapetti AA2003/04
Corso di Informatica (Programmazione)
Rappresentazione dei dati
Test di ipotesi X variabile casuale con funzione di densità (probabilità) f(x; q) q Q parametro incognito. Test Statistico: regola che sulla base di un.
II ESONERO Modelli di Sistemi Biologici II 19/06/2007h12 A.9TEMA 1 1. Si illustri il metodo di stima dei parametri di popolazione a due stadi (TS) (8 pt)
Reti Combinatorie: sintesi
Già primario f.f. U.O. di neurochirurgia
1 Sistemi Digitali. 2 Definizione Analog Waveform Time Voltage (V) 0 5 Digital Waveform Time Voltage (V)
MP/RU 1 Dicembre 2011 ALLEGATO TECNICO Evoluzioni organizzative: organico a tendere - ricollocazioni - Orari TSC.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%% % Accrescimento della PECORA IN TASMANIA % % dal 1820 ad oggi % % ( MODELLO LOGISTICO ) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Cos’è un problema?.
L'algebra di Boole e le sue applicazioni
Gli italiani e il marketing di relazione: promozioni, direct marketing, digital marketing UNA RICERCA QUANTITATIVA SVOLTA DA ASTRA RICERCHE PER ASSOCOMUNICAZIONE.
Usare rappresentazioni di lunghezza fissa porta ad avere valori non rappresentabili: Overflow indica un errore nella rappresentazione del risultato in.
Monitoraggio a.s. 2008/2009Analisi dei dati RETE REGIONALE AU.MI.
Contatore: esempio di circuito sequenziale
CHARGE PUMP Principio di Funzionamento
Settimana: 3-7 marzo Orariolunedimartedi Mercoledi 5 Giovedi 6 Venerdi lezione intro alla fis mod DR lezione intro alla fis mod DR.
Pregare con i Salmi.
Regolarità nella griglia dei numeri
Operazioni con Numeri Naturali e Numeri Decimali
Q UESTIONI ETICHE E BIOETICHE DELLA DIFESA DELLA VITA NELL AGIRE SANITARIO 1 Casa di Cura Villa San Giuseppe Ascoli Piceno 12 e 13 dicembre 2011.
1 Negozi Nuove idee realizzate per. 2 Negozi 3 4.
ORDINE DI CHIAMATA a 1minuto e 2 minuti PRINCIPALI TEMPI DELLA COMPETIZIONE ORDINE DI CHIAMATA a 1minuto e 2 minuti PRINCIPALI TEMPI DELLA COMPETIZIONE.
ISTITUTO COMPRENSIVO “G. BATTAGLINI” MARTINA FRANCA (TA)
1)Completa la seguente successione: C4, B7, E10, D13, G16,. A. G19 B
Liceo classico/scientifico “V. Imbriani”
GEOGRAFIA DEI NUMERI Accademia dei Lincei - Roma 18 Ottobre2011
Un trucchetto di Moltiplicazione per il calcolo mentale
Prima rilevazione sullo stato di attuazione della riforma degli ordinamenti nelle istituzioni scolastiche in LOMBARDIA Attuazione del D.L. 59/2003 a.s.
14 marzo 2002 Avvisi:.
Esempi risolti mediante immagini (e con excel)
1 Sky 2 Sky 3 Sky L’Universo Aperto La teoria del Big Bang prevede che, se la densità globale dell’universo non raggiunge un valore di Ωo (Omega Zero)
NO WASTE Progetto continuità scuola primaria scuola secondaria Salorno a.s. 2013_
Numeri Interi senza segno
Il numero più grande Accademia dei Lincei
TRASFORMATA DI FOURIER
A.P. cat. B - 1 Per chi vuole: Libro di testo D.P. Curtis, K. Foley, K. Sen, C. Morin Informatica di base 2° edizione Mc Graw-Hill Companies.
FONDAMENTI DI INFORMATICA
Customer satisfaction anno 2013 Ospedale di Circolo Fondazione Macchi Varese Presentazione risultati (Febbraio 2014)
DIRETTIVI UNITARI SPI-CGI – FNP-CISL - UILP-UIL TERRITORIO LODIGIANO Lunedì 23 marzo 2015 dalle ore 9,00 alle ore 13,00 Presso la sala Conferenze Confartigianato.
1 Ministero dell’Istruzione, dell’Università e della Ricerca Dipartimento per la Programmazione e la Gestione delle risorse umane, finanziarie e strumentali.
Algebra di Boole.
Corso di Laurea in Ingegneria dell’Informazione
Rappresentazione dell'informazione 1 Se ho una rappresentazione in virgola fissa (es. su segno e 8 cifre con 3 cifre alla destra della virgola) rappresento.
Sintesi Reti Combinatorie
Transcript della presentazione:

Circuiti combinatori e sequenziali Switching Network X1 Xm X2 Z1 Zm Z2 Circuito combinatorio: un circuito senza “memoria”. L’output è completamente determinato dai valori dell’input. Circuito sequenziale: il circuito possiede uno stato interno. L’output è determinato dall’input e dallo stato interno.

Funzioni logiche: algebra booleana INVERTER X X’ se X=0 allora X’=1 se X=1 allora X’=0 A B C=A·B se A=1 E B=1 allora C=1 altrimenti C=0 AND OR A B C=A+B se A=1 O B=1 allora C=1 altrimenti C=0

gate AND Diagrammi temporali

gate OR OR Gate

inverter Inverter

Il contatore binario sincrono a due bit Possiamo generare automaticamente questa sequenza? tempo Usiamo il segnale di clock della scheda per scandire il tempo X=q1 Y=q0 clk 1 per un ciclo di clock, 0 per un ciclo di clock 1 per due cicli di clock, 0 per due ciclo di clock

q1q0: numero a due bit Campioniamo q1q0 numero a un tempo prefissato dopo il bordo di salita di clk  campionamento sincrono 1 1 1 1 2 3 Y=q0 X=q1 1 2 3 Numero binario a due bit che aumenta di 1 a ogni ciclo di clock La cifra più grande di un numero a 2 bit è tre  al ciclo successivo la sequenza riparte da zero

numero binario di output Un circuito che produce questa sequenza che si ripete all’infinito è il contatore sincrono a due bit q0 q1 numero binario di output q[1..0] Diversa rappresentazione: raggruppamento in un bus clk Segnale di input: clk res segnale di input: reset ogni volta che è asserito la sequenza riparte da zero Nel circuito reale il conteggio cambia sempre un pò dopo il bordo del clock 1 2 3

Più input Funzionano allo stesso modo Com’è l’output?

Espressioni booleane e circuiti logici Qualunque espressione booleana può essere implementata come un circuito logico. F = [A(C+D)]’+BE C D C+D A A(C+D) [A(C+D)]’ [A(C+D)]’+BE B E BE F=Y’Z+X Y’ Y Z Y’Z+X X

Rappresentazione: tavola della verità F=Y’Z+X Y’ Y Z Y’Z+X X 2n righe dove n # di variabili

Teoremi fondamentali: operazioni con 0 e 1 X+0 = X X C=X X+1 = 1 X 1 C=1 X 1 C=X X·1 = X X C=0 X·0 = 0

Teoremi fondamentali: leggi idempotenti X+X = X X C=X X C=X X·X = X

Teoremi fondamentali: legge di involuzione (X’)’=X B X C=X

Teoremi fondamentali: legge di complementarità X+X’ = 1 X X’ C=1 X X’ C=0 X·X’ = 0

Semplificazione delle espressioni usando i teoremi fondamentali X può essere una funzione arbitrariamente complessa. Semplifichiamo le seguenti espressioni booleane il più possibile usando i teoremi fondamentali. (AB’ + D)E + 1 = (AB’ + D)(AB’ + D)’ = (AB + CD) + (CD + A) + (AB + CD)’ = (AB’ + D)E + 1 = 1 (AB’ + D)(AB’ + D)’ = 0 (AB + CD) + (CD + A) + (AB + CD)’ = 1

Legge associativa (X+Y)+Z = X+(Y+Z) X Y Z C

Legge associativa (XY)Z = X(YZ) X Y Z C Y Z X C

Prima legge distributiva X(Y+Z) = XY+XZ

Prima legge distributiva X(Y+Z) = XY+XZ

Prima legge distributiva X(Y+Z) = XY+XZ

Prima legge distributiva X(Y+Z) = XY+XZ

Prima legge distributiva X(Y+Z) = XY+XZ

Seconda legge distributiva X+YZ = (X+Y)(X+Z)

Seconda legge distributiva X+YZ = (X+Y)(X+Z)

Seconda legge distributiva (una dimostrazione alternativa) (X + Y)(X + Z) = X(X + Z) + Y(X + Z) (usando la prima legge distributiva) = XX + XZ + YX + YZ (usando la prima legge distributiva) = X + XZ + YX + YZ (usando la legge idempotente) = X·1 + XZ + YX + YZ (usando X1=X) = X(1 + Z + Y) + YZ (usando la legge distributiva) = X·1 + YZ (usando 1+Z+Y=1) = X + YZ (usando X1=X)

Teoremi per semplificare XY + XY’ = X XY + XY’ = X(Y + Y’) = X·1 = X (X + Y)(X + Y’) = X (X + Y)(X + Y’) = XX + XY’ + YX + YY’ = X + X(Y’ + Y) + 0 = X + X·1 = X X + XY = X X(1 + Y) = X·1 = X X(X + Y) = X X(X + Y) = XX + XY = X·1 + XY = X(1 + Y) = X·1 = X XY’ + Y = X + Y (using the second distributive law) XY’ + Y = Y + XY’ = (Y + X)(Y + Y’) = (Y + X)·1 = X + Y (X + Y’)Y = XY XY + Y’Y = XY + 0 = XY

Teoremi per semplificare e dualità Qualunque teorema o identità in algebra booleana resta vero se 0 e 1 sono scambiati e • e + sono pure scambiati ovunque. (X + Y)(X + Y’) = X DUALE (X + Y)  (X + Y’) XY + XY’ = X X(X + Y) = X X + XY = X  (X + Y) X XY’ + Y = X + Y ( X + Y’)  Y = XY + (X + Y) XY’ Y

Dualità Nell’applicare il principio di dualità dobbiamo fare attenzione alla precedenza degli operatori nell’espressione originale: X + X • Y = X X • (X + Y) = X (dualità) • ha precedenza  uso di parentesi Esempio di applicazione non corretta del principio: X + X • Y = X X • X + Y = X (dualità) X + Y = X (idempotenza) Non senso!

W = [M + N’P + (R + ST)’][M + N’P + R + ST] Esempi Semplifichiamo la seguenta espressione: W = [M + N’P + (R + ST)’][M + N’P + R + ST] X = M + N’P Y = R + ST W = (X + Y’)(X + Y) W = XX + XY + Y’X + Y’Y W = X·1 + XY + XY’ + 0 W = X + X(Y + Y’) = X + X·1 = X W = M + N’P

 La prima legge di De Morgan Il complemento della somma è uguale al prodotto dei complementi (X+Y)’ = X’Y’ Z Y X  X Y Z

 La prima legge di De Morgan Il complemento della somma è uguale al prodotto dei complementi (X+Y)’ = X’Y’ Z Y X  X Y Z

 La prima legge di De Morgan Il complemento della somma è uguale al prodotto dei complementi (X+Y)’ = X’Y’ Z Y X  X Y Z

 La prima legge di De Morgan Il complemento della somma è uguale al prodotto dei complementi (X+Y)’ = X’Y’ Z Y X  X Y Z

 La prima legge di De Morgan Il complemento della somma è uguale al prodotto dei complementi (X+Y)’ = X’Y’ X X Y  Z Z Y

 La seconda legge di De Morgan Il complemento del prodotto è uguale alla somma dei complementi (XY)’ = X’ + Y’ Z Y X  Z X Y

   NOR e NAND e altri simboli Abbiamo già parlato abbondantemente dei NOR e NAND X Y Z  X Y Z NOR Z X Y  X Y Z NAND Spesso si usano abbreviazioni simili anche per gli input negati. Ad esempio  Z Y X

Legge di De Morgan (cont.) La legge di De Morgan si generalizza a n variabili: (X1 + X2 + X3 + ··· + Xn)’ = X1’X2’X3’ ··· Xn’ (X1X2X3 ··· Xn)’ = X1’ + X2’ + X3’ + ··· + Xn’

Legge di De Morgan (esempio) Esprimiamo il complemento f’(w,x,y,z) della seguente espressione in forma semplificata. f(w,x,y,z) = wx(y’z + yz’) f’(w,x,y,z) = w’ + x’ + (y’z +yz’)’ = w’ + x’ + (y’z)’(yz’)’ = w’ + x’ + (y + z’)(y’ + z) = w’ + x’ + yy’ + yz + z’y’ + z’z = w’ + x’ + 0 + yz + z’y’ + 0 = w’ + x’ + yz + y’z’

Logica positiva e negativa Logica positiva: la tensione high (+V) rappresenta 1 e la tensione low (0V) rappresenta 0 Logica negativa: la tensione high (+V) rappresenta 0 e la tensione low (0V) rappresenta 1

Logica positiva e negativa (esempio) gate logico e2 e3 e1 eo Tensioni elettriche Logica positiva Logica negativa AND OR  lo stesso circuito fisico implementa diverse funzioni logiche. La funzione implementata depende dalla logica usata per Interpretare gli input e gli output.

Il teorema del consenso XY + X’Z + YZ = XY + X’Z XY + X’Z + YZ = XY + X’Z + 1·YZ = XY + X’Z + (X + X’)YZ = XY + X’Z + XYZ + X’YZ = XY + XYZ + X’Z + X’YZ = XY(1 + Z) + X’Z(1 + Y) = XY·1 + X’Z·1 = XY + X’Z

Dalla tavola della verità alla funzione Data una tavola della verità, possiamo implementare F facendo l’OR di tutti i termini che sono 1 Tavola della verità della funzione F = X + Y’Z Esempio Esercizio: semplificare questa espressione

Definizioni: Forme standard Questo sistema non produce necessariamente l’espressione di F più semplice Ma è meccanico passare dalla tavola della verità a F Definizioni: Termini prodotto – AND  A’BZ Termini somma – OR  X + A’ Somma e prodotto logico, non aritmetico

Definizione: mintermine Termine prodotto in cui tutte le variabili appaiono una volta (complementate or no) Per n variabili ci saranno 2n mintermini Come i numeri binari da 0 to 2n-1

Somma di mintermini F: OR di tutti i mintermini della tavola della verità con un 1  F = X’Y’Z’ + X’YZ’ + XY’Z + XYZ  F = X’Y’Z’ + X’YZ’ + XY’Z  F = X’Y’Z’  F = X’Y’Z’ + X’YZ’ Complemento di F Sommiamo semplicemente sugli altri mintermini  F’= m1 + m3 + m4 + m6 Eserizio: semplificare F, scrivere l’espressione per F’ e semplificarla

Semplificazione di somme di prodotti La semplificazione di una somma di mintermini può dare una somma di prodotti La differenza è che ciascun termine non ha necessariamente tutte le variabili Gates risultanti  diversi AND e un OR La somma di prodotti ha due livelli di gate

Maxtermini Termine somma in cui tutte la variabili appaiono una volta (complementate o no) In un maxtermine una variabile è complementata se il corrispondente bit nella rappresentazione binaria di è 1

Prodotto di maxtermini I mintermini e maxtermini con lo stesso indice sono complementi:  m0’ = (X’Y’Z’)’ = X + Y + Z = M0  Possiamo esprimere F come AND di tutte le righe che producono un output uguale a 0 F = (X + Y + Z’)(X +Y’+Z’)(X’+Y+Z)(X’+Y’+Z)  OR seguiti da un AND

Rivelatore di numeri primi Data una combinazione di input a 4 bit N = N3N2N1N0 questo circuito produce un output pari a 1 per N = 1, 2, 3, 5, 7, 11, 13 e 0 altrimenti La tavola della verità è N3 N2 N1 N0 F 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Esercizio: Determinare l’espressione logica e semplificarla

Progetto: visualizzazione di cifre su un display Display: array di 7 led rossi Sulla scheda sono presenti 4 array

Come si controlla ciascun array? 7 segmenti  7 segnali a, b, c, d, e, f, g controllati dalla fpga – se uno di essi è asserito si accende il led corrispondente a b c d e f g led[6..0] In questo progetto mandiamo la stessa cifra a tutti e quattro gli array Vedremo un uso più sofisticato con controllo indipendente di ciascun array più avanti

Progetto: visualizzare un numero da zero a sette sugli array Primo step scrivere la tavola della verità delle seguenti funzioni logiche: Input: numero binario a 3 bit q[2..0] Outputs: a, b, c, d, e, f, g richiesti per visualizzare tale numero binario Es. Il led a è asserito quando il numero di input q[2..0] è : 0 oppure 2 oppure 3 oppure 5 oppure sei oppure 7 oppure 8 oppure 9 q2 q1 q0 a b c d e f g 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Completare la tavola per ciascuno dei led

 vediamo cosa vuol dire e come si procede Secondo step: determinare le equazioni logiche a partire dalla tavola della verità per ciascuno dei sette segnali col metodo meccanico della somma di mintermini Terzo step: minimizzare le espressioni logiche con i teoremi dell’algebra booleana Quarto step: disegnare il circuito che ha come input q2, q1, q0 e come output a, b, c, d, e, f, g con QUARTUS Disegno implementato con una struttura gerarchica  vediamo cosa vuol dire e come si procede

Struttura gerarchica di uno schema Foglio principale: LabElettronica Struttura gerarchica di uno schema

Clickate sul menu File e selezionate New

Selezionare Block diagram / schematic file

Appare un nuovo foglio di disegno. Salvarlo col nome seven-seg-decoder

In questo foglio implementiamo il circuito In questo foglio implementiamo il circuito. Cominciamo a mettere gli input (q[2..0]) e gli output (a, b, c, d, e, f, g) Disegnate poi tutto il circuito e salvate il file nuovamente

Creiamo un simbolo per il circuito corrispondente al file seven-seg-decoder Il simbolo può essere quindi usato come componente in altri fogli di disegno

Torniamo al foglio di disegno principare (LabElettronica) selezioniamo col mouse symbol tool

Compare la finestra che permette di selezionare simboli di componenti Scrivere seven-seg-decoder: appare il simbolo del nuovo componente Clickare OK

Il componente può essere ora posizionato nel foglio principale

Pilotiamo l’input q[2..0] con un valore costante attraverso un componente lpm_constant

Gli output a, b, c, d, e, f, g del componente seven-seg-decoder nel foglio LabElettronica vanno collegati ai pin di output denominati led[0], ..., led[6] che devono essere assegnati ai numeri dei pin fisici 144, 143, 142, 141, 140, 139, 136 come da schema della scheda in figura sotto i pin led[6..0] corrispondono ad g, f, e, d, c, b, a

Ci sono altri due segnali da considerare sugli array DP: segnale che accende la virgola COM# segnale di abilitazione (enable): i led di un array si accendono solo se il corrispondente segnale COM# è asserito DIS[3..0] COM3, COM2, COM1, COM0 DP led[7] Teniamo deasserito permanentemente led[7]: Collegato a massa nel foglio principale e mandato al pin di output led[7] corrispondente al pin 135

Controllo dei segnali COM# Decidiamo in quale array visualizzare la cifra controllando i segnali COM# con i quattro tasti presenti sulla scheda SW0 SW1 SW2 SW3

Nel foglio principale definiamo: - 4 input SW0, SW1, SW2, SW3 – 4 output DIS0, DIS1, DIS2, DIS3 Collegate SW# al corrispondente DIS# Collegati ai tasti DIS[3..0] COM3, COM2, COM1, COM0 Attenzione: SW# sono attivi bassi per cui vanno invertiti prima di collegarli a DIS#

Avete 7 giorni di tempo (prova lunedì prossimo) Quinto step: simulare il comportamento del circuito QUARTUS Sesto step: provare il funzionamento del circuito sulla scheda verifica: mandatemi per email tutti i file del progetto – potete lavorare in coppia Avete 7 giorni di tempo (prova lunedì prossimo)

Addizionatore a un bit

Addizionatore completo a un bit Progettiamo un circuito logico che implementi un addizionatore a due bit. Questo circuito ha tre input (A, B, Cin) e due output (S, Cout). L’output S è uno se la somma è uno, cioè se il numero di input uguale a uno è dispari. L’output del riporto è uno se la somma produce un riporto, cioè se due o più input sono uno. Cin Adder B A S Cout

Adder Cin Cout S B A S = A’B’Cin + A’BCin’ + AB’Cin’ + ABCin Cout = A’BCin + A B’Cin + ABCin’ + ABCin = A’BCin + ABCin + AB’Cin + ABCin + ABCin’ + ABCin = (A’ + A)BCin + (B’ + B)ACin + (Cin’ + Cin)AB = 1·BCin + 1· ACin + 1· AB = BCin + ACin + AB

Realizzare circuiti pratici Problema: progettare un circuito logico per far funzionare in modo automatizzato l’allarme di una macchina. Il manuale dell’allarme fornisce i seguenti dettagli sul funzionamento. “L’allarme si spegnerà se il sistema di allarme è attivato e una qualunque delle due porte o il cofano sono aperti, o se il sensore di vibrazione è attivato e la chiave non è inserita.” “L’allarme si spegnerà se il sistema di allarme è attivato e una qualunque delle due porte o il cofano sono aperti, o se il sensore di vibrazione è attivato e la chiave non è inserita.” AllarmeAttivato PortaConducenteAperta PortaPasseggeroAperta CofanoAperto Vibrazione ChiaveInserita Inputs:

Realizzare circuiti pratici “L’allarme si spegnerà se il sistema di allarme è attivato e una qualunque delle due porte o il cofano sono aperti, o se il sensore di vibrazione è attivato e la chiave non è inserita.” AllarmeAttivato PortaConducenteAperta PortaPasseggeroAperta CofanoAperto Vibrazione ChiaveInserita Inputs: AllarmeSpento = AllarmeAttivato • (PortaConducenteAperta + PortaPasseggeroAperta + CofanoAperto) + Vibrazione • (ChiaveInserita)’

Realizzare circuiti pratici AllarmeSpento = AllarmeAttivato • (PortaConducenteAperta + PortaPasseggeroAperta + CofanoAperto) + Vibrazione • (ChiaveInserita)’ PortaConducenteAperta PortaPasseggeroAperta CofanoAperto AllarmeAttivato AllarmeSpento Vibrazione ChiaveInserita Esercizio: implementare e simulare questo circuito con QUARTUS

Minimizzazione di funzioni logiche: mappe di Karnaugh Le mappe di Karnaugh erano (relativamente) utili quando la gente eseguiva la semplificazione a mano Il processo di semplificazione al giorno d’oggi è completamente eseguito da algoritmi computerizzati Illustreremo le mappe principalmente per avere una comprensione più profonda, non come strumento reale.

Anatomia delle mappe di Karnaugh Una mappa è una rappresentazione grafica di una tavola della verità. Un “box” per ciascuna riga della tavola contente il valore della funzione (zero oppure uno Indica il box corrispondente ad A=1 A Tavola della verità di una funzione di una variabile A F 0 cella 0 1 cella 1 A=0 A=1 A B 0 1 1 Tavola della verità di una funzione di una variabile A B F 0 0 cella 0 0 1 cella 1 1 0 cella 2 1 1 cella 3 A=0,B=0 cella 0 A=1,B=0 cella 2 A=0,B=1 cella 1 A=1,B=1 cella 3

Mappe di Karnaugh per funzioni di tre variabili Disposizione di righe e colonne: ciascuna cella corrisponde a una combinazione di input che differisce da quelle adiacenti in una sola variabile A B C 0 0 0 cella 0 0 0 1 cella 1 0 1 0 cella 2 0 1 1 cella 3 1 0 0 cella 4 1 0 1 cella 5 1 1 0 cella 6 1 1 1 cella 7 B=1 C 1 A=1 00 01 11 10 A,B 8 celle

Mappe di Karnaugh per funzioni di tre variabili Disposizione di righe e colonne: ciascuna cella corrisponde a una combinazione di input che differisce da quelle adiacenti in una sola variabile A B C 0 0 0 cella 0 0 0 1 cella 1 0 1 0 cella 2 0 1 1 cella 3 1 0 0 cella 4 1 0 1 cella 5 1 1 0 cella 6 1 1 1 cella 7 AB A=0,B=1,C=0 A=1,B=1,C=0 A C B 00 01 11 10 1 A=0,B=0,C=0 A=1,B=0,C=0 A=0,B=0,C=1 A=1,B=0,C=1 A=0,B=1,C=1 A=1,B=1,C=1

Esempio d’uso delle mappe di Karnaugh: l’addizionatore a un bit Adder Cin Cout S B A Alternativamente, come si usa una mappa di Karnaugh invece della semplificazione algebrica? S = A’B’Cin + A’BCin’ + AB’Cin’ + ABCin Cout = A’BCin + A B’Cin + ABCin’ + ABCin = A’BCin + ABCin + AB’Cin + ABCin + ABCin’ + ABCin = BCin + ACin + AB = (A’ + A)BCin + (B’ + B)ACin + (Cin’ + Cin)AB = 1·BCin + 1· ACin + 1· AB Equazioni logiche determinate con l’algebra booleana

Mappa per Cout Adder Cin Cout S B A 1 1 1 1 Scriviamo in ogni cella il valore della funzione logica (Cout in questo caso) A A,B 00 01 11 10 1 Cin B

Cout = ABCin’ + A’BCin + ABCin + AB’Cin Ciascuna cella contenente un 1 corrisponde a un mintermine da considerare nella somma di mintermini della funzione A A,B 1 A=1, B=1 Cin=0 mintermine ABCin’ 00 01 11 10 1 A=0, B=1 Cin=1 mintermine A’BCin 1 Cin 1 A=1, B=1 Cin=1 mintermine ABCin 1 A=1, B=0 Cin=1 mintermine AB’Cin B La funzione logica non ancora minimizzata è Cout = ABCin’ + A’BCin + ABCin + AB’Cin

Consideriamo ad esempio Passo successivo: dobbiamo ricoprire tutte le celle contenti un 1 usando rettangoli i più grandi possibile e col minor numero di rettangoli possibile Consideriamo ad esempio A Cin B 1 Il numero di celle racchiuse deve essere multiplo di 2 (1,2, 4, ...) Ricordiamo la disposizione di righe e colonne: ciascuna cella corrisponde a una combinazione di input che differisce da quelle adiacenti in una sola variabile Poichè coppie di celle 1 adiacenti hanno minitermini che differiscono in una sola variabile, possiamo combinarle (cioè combinare la somma di mintermini) in un solo termine usando la legge dell’alegra booleana XY’+XY=X

In questo caso B varia per cui non si considera Regola meccanica: questo gruppo di celle (corrispondente a una somma di 2 mintermini) è equivalente a un singolo termine prodotto in cui: In questo termine si considerano solo le variabili che hanno lo stesso valore in tutte le celle del gruppo: In questo caso B varia per cui non si considera Siccome A e Cin hanno entrambi valore 1 devono apparire non complementati ACin A Cin B 1

Dobbiamo ancora finire di ricoprire tutte le celle ACin A Cin B 1 A Cin B 1 ABCin+ABCin’=AB A Cin B 1 ABCin+A’BCin=BCin A B Cin 1 Cout=ACin+BCin+AB

Mappa di Karnaugh per S Adder Cin Cout S B A A Cin B 1 1 1 1 S = 1 1 1 1 S = Mappa di Karnaugh per S

Adder Cin Cout S B A A Cin B 1 1 1 1 S = A’B’Cin Mappa di Karnaugh per S

Adder Cin Cout S B A A Cin B 1 1 1 1 S = A’BCin’ + A’BCin Mappa di Karnaugh per S

Adder Cin Cout S B A A Cin B 1 1 1 1 S = A’BCin’ + A’B’Cin + ABCin Mappa di Karnaugh per S

Adder Cin Cout S B A A Cin B 1 1 1 1 S = A’BCin’ + A’B’Cin + ABCin + AB’Cin’ Mappa di Karnaugh per S

In molte funzioni logiche la procedura di combinazione delle celle può essere estesa per combinare più di due 1-celle in un singolo termine prodotto. Combinazione di 2i celle possibile se: ci sono i variabili che assumono tutte le 2i combinazioni possibili Le restanti n-i hanno lo stesso valore in ogni cella  Termine prodotto ha n-i variabili: complementata se 0 in ogni cella, non complementata se appare come 1. Graficamente: cerchiamo insiemi rettangolari di 2i 1-celle (sono ammessi anche “incollaggi” su bordi opposti) Per ciascuna variabile: Se è zero in tutta l’area ricoperta  complementata Se è uno in tutta l’area ricoperta  non complementata Se è zero in una parte e uno in un’altra  non appare nel prodotto

L’adiacenza è cilindrica Z’ si estende dal bordo sinistro al bordo destro F = Z’

F=SA,B,C(0,1,4,5,6) AC’ AC’+B’ A C B 1 00 01 11 10 A C B 1 00 01 11 10 00 01 11 10 A C B 1 00 01 11 10 A C B 1 00 01 11 10 A C B 1 00 01 11 10 AC’ AC’+B’

Esempio di funzione a quattro variabili: rivelatore di numeri primi F=SN3,N2,N1,N0(1,2,3,5,7,11,13)

Esempio di funzione a quattro variabili: rivelatore di numeri primi F=SN3,N2,N1,N0(1,2,3,5,7,11,13) N3 N2 N1 N0 N3N2 N1N0 00 01 11 10 00 01 11 10 1 N3 N3N2 N2N1’N0 00 01 11 10 N1N0 00 01 11 10 4 12 8 N3’N0 1 1 1 5 1 13 9 N0 N2’N1N0 N1 1 3 1 7 15 1 11 N3’N2’N1 1 2 6 14 10 N2

Implicanti primi Un implicante primo è un insieme cerchiato di 1-celle soddisfacenti la regola di combinazione tale che se cerchiamo di farlo più grande (ricoprendo il doppio delle celle) copre uno o più zeri. Una somma minima è una somma di implicanti primi. W X Y Z WX YZ 00 01 11 10 00 01 11 10 4 1 12 8 1 1 5 1 13 3 2 1 7 9 1 14 1 15 6 F=SW,X,Y,Z(5,7,12,13,14,15) W X Y Z WX YZ 00 01 11 10 00 01 11 10 1 XZ WX

La somma completa non è sempre minima però. La somma di tutti gli implicanti primi di una funzione logica è detta la somma completa. La somma completa non è sempre minima però. F=SW,X,Y,Z(1,3,4,5,9,11,12,13,14,15) XY’ W X Y Z WX YZ 00 01 11 10 00 01 11 10 W WX WZ 00 01 11 10 YZ 1 1 00 01 11 10 1 4 1 12 8 WX 1 1 1 1 1 1 5 1 13 1 9 X’Z 1 Y’Z Z 1 1 Y 1 3 7 1 15 1 11 1 1 2 6 1 14 10 X  5 implicanti primi, ma solo tre necessari per ricoprire tutte le 1-celle

Una 1-cella distinta è una combinazione di input coperta da un solo implicante primo Un implicante primo essenziale è uno che copre una o più 1-celle distinte  deve essere incluso obbligatoriamente. Dobbiamo quindi determinare come coprire le 1-celle non coperte da implicanti primi essenziali (se ce ne sono) XY’ W X Y Z WX YZ 00 01 11 10 00 01 11 10 1 XY’ X’Z W WX WZ 00 01 11 10 YZ 00 01 11 10 1 1 WX X’Z 1 1 1 1 Y’Z Z Y 1 1 1 1 X  in questo caso i 3 implicanti primi essenziali ricoprono tutte le 1-celle

Qui gli implicanti primi essenziali non ricoprono tutte le 1-celle F=SW,X,Y,Z(0,1,2,3,4,5,7,14,15) W’Y’ W W WX WX 00 01 11 10 00 01 11 10 YZ YZ 00 01 11 10 1 0 1 4 12 8 00 01 11 10 W’X’ 1 1 1 1 1 5 13 9 1 1 Z Z Y 1 3 1 7 1 15 11 Y 1 1 1 1 2 6 1 14 10 1 1 X X WXY Qui gli implicanti primi essenziali non ricoprono tutte le 1-celle Ci sono altri due implicanti primi e dobbiamo scegliere uno dei due

Qui gli implicanti primi essenziali non ricoprono tutte le 1-celle W X Y Z WX YZ 00 01 11 10 00 01 11 10 1 XYZ W’Z Esaminiamo gli altri due implicanti primi: dobbiamo scegliere uno dei due W’Y’ W WX 00 01 11 10 YZ 00 01 11 10 1 1 W’X’ 1 1 Z Y 1 1 1 1 1 X WXY  usiamo il termine prodotto W’Z perchè ha meno input e quindi costa meno

Numeri binari E’ importante essere in grado di rappresentare numeri nei circuiti digitali Ad esempio, l’output di un convertitore analogico/digitale (ADC) è un numero a n bit, dove n tipicamente si trova nell’intervallo 8-16. Si utilizzano varie rappresentazioni, ad es.; - interi non segnati - complemento a due per rappresentare numeri negativi

OR esclusivo X  Y = XY’ + X’Y X Y C Se X=1 OR Y=1, ma Non entrambi, allora C=1 Legge commutativa: X  Y = Y  X X  0 = X  1 = X  X = X  X’ = X X’ 1 Legge associativa: (X  Y)  Z= X  ( Y  Z) = X  Y  Z Legge distributiva: X(Y  Z) = XY  XZ

OR esclusivo (cont.) Legge del complemento: (X  Y)’ = X  Y’ = X’  Y Dimostrazione algebrica: (X  Y)’ = (XY’ + X’Y)’ = (XY’)’(X’Y)’ = (X’ + Y)(X + Y’) = X’X + X’Y’ + XY + YY’ = 0 + X’Y’ + XY + 0 = X’Y’ + XY = X’  Y = XY + X’Y’ = X  Y’

Permutazione del valore in-place Si dimostrano queste proprietà: (XY)Y = X (XY)X= Y Dim. algebrica: (XY) Y = (XY’ + X’Y)Y’ + (XY’ + X’Y)’Y = XY’Y’ + X’YY’ + ((XY’)’(X’Y)’)Y = XY’ + 0 + ((X’+Y)•(X+Y’))Y = XY’ + X’XY + X’Y’Y +XYY + YY’Y = XY’ + 0 + 0 + XY + 0 = X(Y’ + Y) = X•1 = X

Using In-place Value Permutation in Assembly The In-place Value Permutation Property of the exclusive-OR: (XY)Y = X (XY)X= Y Can be used in assembly programming to exchange the value of two registers in place: R1  R1R2 R2  R1R2 If we do back substitution in the second and third operations, we will find out that (assuming R1=A and R2=B initially): R1  (A  B) R2  (A  B)  B = A R1  (A  B)  A = B Thus, if initially R1 = A and R2 = B, then after this sequence of operations, R1 = B and R2 = A.

Equivalence Gate (X  Y) = XY + X’Y’ X Y C If X=Y then C=1, otherwise C=0 (X  Y) = (X  Y)’