Corrente elettrica Si consideri una sezione A di un conduttore e sia dq la carica elettrica totale che attraversa la sezione A in un intervallo di tempo.

Slides:



Advertisements
Presentazioni simili
Potenza dissipata per effetto Joule:
Advertisements

La pila e l’effetto Joule
LA CORRENTE ELETTRICA Prof. Roberto Capone.
Prof. Roberto Capone Liceo Classico “F. De Sanctis “ Lacedonia (AV)
Struttura atomica Un atomo è formato da: nucleo centrale +
Fisica 2 Corrente continua
Fisica 2 Corrente continua
Corrente continua 2 6 giugno 2011
Esercizio 1 Un condensatore piano di area A=40 cm2 e distanza tra i piatti d=0.1 mm, e` stato caricato collegandolo temporaneamente ad un generatore di.
Corrente continua 1 6 giugno 2011
Esercizio 1 Tre conduttori sferici cavi concentrici, di spessore trascurabile, hanno raggi R1 = 10 cm, R2 = 20 cm, R3 = 40 cm. L’intercapedine compresa.
LAVORO – ENERGIA ELETTRICITÀ
Didattica a distanza FISICA - CIRCUITI.
Parte II Corrente e conduttori
Induzione elettromagnetica: evidenza sperimentale
La corrente elettrica (1/2)
Fenomeni elettrici Legge di Coulomb
Energia e potenza nei circuiti elettrici
Scuola media “A. Mendola” – Favara – Classe 3° D Casà Maria Chiara
Prof. Antonello Tinti La corrente elettrica.
CORRENTE ELETTRICA Laurea in LOGOPEDIA
Lavoro di un campo elettrico uniforme
La batteria della figura ha una differenza di potenziale di 10 V e i cinque condensatori hanno una capacità di 10 mF. Determinare la carica sui condensatori.
CAMPO MAGNETICO GENERATO
IL CAMPO ELETTROMAGNETICO LENTAMENTE DIPENDENTE DAL TEMPO
Corrente Elettrica La carica in moto forma una corrente elettrica.
Induzione Legge di Faraday E dS B x x x x x x x x x x E R B 1 E E.
Circuiti elettrici “stazionari”
Fisica 2 13° lezione.
Le grandezze fondamentali dellelettricità sono: la carica elettrica, la corrente elettrica e il voltaggio. La corrente (I) è definita come la quantità
Circuiti Elettrici.
Corrente elettrica Elenco dei contenuti: Corrente elettrica
Corrente e resistenza Cap. 27 HRW
Strategie per la risoluzione di problemi sui circuiti elettrici
L’elettricità.
CORRENTE ELETTRICA Applicando una d.d.p. ai capi di un filo conduttore si produce una corrente elettrica. Il verso della corrente è quello del moto delle.
Parte XVIII: Correnti Stazionarie
CIRCUITI IN CORRENTE CONTINUA
Prof. Francesco Zampieri
Cenni teorici. La corrente elettrica dal punto di vista microscopico
Le leggi di Ohm Realizzazione a cura del Prof. Francesco Porfido.
La corrente elettrica Realizzazione a cura del Prof. Francesco Porfido.
Resistenze in serie e in parallelo
CORRENTE ELETTRICA, LEGGE DI OHM, RESISTENZE IN SERIE E IN PARALLELO E LEGGI DI KIRCHOFF PER I CIRCUITI In un condensatore la carica Q = C DV che può accumulare.
L'ELETTRICITA'.
Andrea Ventura Scuola Estiva di Fisica 2014
CORRENTE ELETTRICA Applicando una d.d.p. ai capi di un filo conduttore si produce un flusso di particelle cariche, cioè una corrente elettrica. Per convenzione,
La corrente elettrica.
La corrente elettrica continua
Misure elettriche ed elettroniche
ENERGIA E POTENZA ELETTRICA
1 ampere = C s–1 = C (1.6 10–19 C/elettrone) s–1 =
Circuiti ed Elettronica
La corrente elettrica Il fenomeno della corrente elettrica può essere assimilato ad un fenomeno idraulico. Consideriamo due serbatoi A e B posti ad.
POTENZA ELETTRICA La potenza è il lavoro compiuto nell’unità di tempo.
Fisica: lezioni e problemi
Grandezze elettriche.
Circuiti elettrici - Componenti reali
La carica elettrica Tutto ciò che ha a che fare con l’elettricità trae origine dalla materia chiamata carica elettrica. La carica elettrica si misura con.
Induzione elettromagnetica
In un conduttore sono presenti degli elettroni liberi di muoversi al suo interno. Tale movimento è dovuto all’agitazione termica delle particelle. Se.
Corrente elettrica L.S.”G. Oberdan” C.Pocecco Corrente elettrica pag. 1 La seguente presentazione è stata ideata per offrire agli studenti una sintesi.
CARICA ELETTRICA strofinato con seta strofinata con materiale acrilico Cariche di due tipi: + Positiva - Negativa repulsiva attrattiva.
Corrente elettrica Cariche in movimento e legge di Ohm.
LA CORRENTE ELETTRICA CLASSE 4As Annalisa Ferrara Emanuele Palmentieri
Prof.ssa Francesca Santonocito 1 La prima legge di Ohm “Metodi e tecniche per la didattica innovativa nella matematica” Codice Progetto: Codice Progetto:
LA CORRENTE ELETTRICA NEI METALLI. LA CORRENTE ELETTRICA Una corrente elettrica è un movimento ordinato di particelle dotate di carica elettrica. Nei.
Transcript della presentazione:

Corrente elettrica Si consideri una sezione A di un conduttore e sia dq la carica elettrica totale che attraversa la sezione A in un intervallo di tempo dt Si definisce la corrente elettrica come rapporto: La corrente elettrica è una grandezza scalare Carica complessiva che attraversa la sezione A nel tempo t: A dq

Portatori di carica e verso della corrente Nei conduttori sono presenti cariche di conduzione che possono muoversi liberamente nel materiale Le cariche di conduzione possono essere positive, negative o di entrambi i segni (elettroni di conduzione nei metalli, ioni positivi e negativi nelle soluzioni, ecc.) Il verso della corrente elettrica è quello in cui si muovono le cariche positive Se i portatori di carica sono carichi positivamente, il verso della corrente coincide con quello in cui si muovono i portatori di carica Se i portatori di carica sono carichi negativamente, il verso della corrente è opposto rispetto a quello del moto dei portatori di carica Ai fini del calcolo della corrente, una carica +q che si muove da sinistra verso destra è equivalente a una carica –q che si muove da destra verso sinistra: in entrambi i casi si ha una corrente che scorre da sinistra verso destra

Corrente elettrica nei conduttori In un conduttore in equilibrio elettrostatico le cariche di conduzione si muovono in maniera disordinata per effetto dell’agitazione termica (gli elettroni di conduzione nei metalli hanno una velocità media dell’ordine di 106m/s) Se si considera una qualsiasi sezione del conduttore, poichè i portatori di carica si muovono in modo casuale, il flusso netto di carica attraverso tale sezione è nullo In condizioni di equilibrio elettrostatico un conduttore non è attraversato da corrente! Per avere una corrente elettrica stazionaria è necessario che ci sia un flusso netto di carica attraverso una sezione di un conduttore Tale flusso netto di carica può essere mantenuto applicando un campo elettrico all’interno del conduttore I portatori di carica si muovono lungo le linee del campo elettrico, dando luogo ad una corrente

Generatori Per mantenere una corrente in un conduttore occorre utilizzare un generatore, che mantiene una d.d.p. costante tra i suoi morsetti La d.d.p. ai capi dei morsetti produce un campo elettrico nella spira conduttrice, che causa il movimento delle cariche all’interno della spira, e quindi la corrente L’energia necessaria per mantenere in moto i portatori di carica nel conduttore viene fornita dal generatore (in genere a spese della sua energia chimica)

Resistenza Applicando la stessa d.d.p. ai capi di diversi conduttori ne risultano correnti diverse Si definisce la resistenza di un conduttore come rapporto tra la d.d.p. applicata ai suoi capi e la corrente che lo attraversa A parità di d.d.p. applicata, la corrente che attraversa un conduttore è tanto maggiore quanto più piccola è la sua resistenza La resistenza rappresenta quindi la tendenza del conduttore ad opporsi al flusso delle cariche che lo attraversano La resistenza in generale varia con la d.d.p. applicata Esiste una classe di conduttori (conduttori ohmici) per i quali la resistenza non dipende dalla d.d.p. applicata in un conduttore ohmico la corrente che fluisce nel conduttore è proporzionale alla d.d.p. applicata (legge di Ohm)

Unità di misura L’intensità di corrente è una grandezza fondamentale Nel SI la corrente si misura in Ampere (A) La resistenza è invece una grandezza derivata L’equazione dimensionale della resistenza è [R]=[ML2T-3I-2] Nel SI la resistenza si misura in ohm (Ω)

Resistenze nei circuiti Simboli circuitali della resistenza: A B i R Legge di Ohm:

Potenza nei circuiti elettrici + - i V Nel tempo dt una carica dq = i dt si sposta dal polo positivo a quello negativo del generatore Lavoro compiuto dal generatore sulla carica dq: Potenza dissipata: La potenza è dissipata per effetto del passaggio delle cariche attraverso la resistenza sotto forma di calore (effetto Joule)

Resistenze in serie Il collegamento in serie si realizza concatenando le resistenze Le resistenze collegate in serie sono attraversate dalla stessa corrente R1 R2 A B C i Legge di Ohm per R1: Legge di Ohm per R2: Resistenza equivalente: Per N resistenze in serie la resistenza equivalente è data da:

Resistenze in parallelo Il collegamento in parallelo si realizza collegando tutte le resistenze alla stessa d.d.p. R1 R2 A B i i1 i2 Legge di Ohm per R1: Legge di Ohm per R2: Resistenza equivalente: Per N resistenze in parallelo:

Reti lineari Rete lineare = circuito composto da generatori e resistenze rami maglie nodi

Leggi di Kirchoff Legge dei nodi: la somma delle correnti che entrano in un nodo è uguale alla somma delle correnti che escono dal nodo stesso Legge delle maglie: la somma algebrica delle d.d.p. lungo una maglia è nulla A B C D E R1 R2 R3 R4 R5 ε1 ε2 + − i1 i2 i3 i4 i5 i1 i2 i3 i4 i5 Sommando le cadute di tensione lungo il tratto ABCDEA: