Urto in una dimensione -Urto centrale

Slides:



Advertisements
Presentazioni simili
EFFETTO FIONDA.
Advertisements

Alberto Martini. m2m2 v1v1 m1m1 v1v1 m1m1 m2m2 v1v1 vogliamo risolvere un difficile problema! m1m1 m2m2.
HALLIDAY - capitolo 7 problema 11
Meccanica aprile 2011 Urti Conservazione della quantita` di moto e teorema dell’impulso Energia cinetica Urti elastici e anelastici Urto con corpi.
Meccanica 10 8 aprile 2011 Slittamento. Rotolamento puro
Esercizi di dinamica.
Teoria della relatività-4 16 gennaio 2013 Nuova definizione della quantità di moto Teorema dellenergia cinetica Espressione dellenergia cinetica Energia.
Principio di conservazione della quantità di moto
Urti e forze impulsive “Urto”: interazione che avviene in un tempo t molto breve (al limite infinitesimo) tra corpi che esercitano mutuamente forze molto.
Applicazione h Si consideri un punto materiale
Urti Si parla di urti quando due punti materiali (o due sistemi di punti materiali) si scambiano energia e quantità di moto in un tempo estremamente breve.
Una forza orizzontale costante di 10 N è applicata a un cilindro di massa M=10kg e raggio R=0.20 m, attraverso una corda avvolta sul cilindro nel modo.
Lavoro ed energia cinetica: introduzione
Centro di massa Consideriamo un sistema di due punti materiali di masse m1 e m2 che possono muoversi in una dimensione lungo un asse x x m1 m2 x1 x2 xc.
Le forze conservative g P2 P1 U= energia potenziale
Dinamica del punto materiale
Un corpo di massa m= 0.5 kg, che si muove su di un piano orizzontale liscio con velocità v=0.5 m/s verso sinistra, colpisce una molla di costante elastica.
Una sfera di raggio r =1 m è poggiata su un piano orizzontale e mantenuta fissa. Un cubetto di piccole dimensioni è posto in equilibrio instabile sulla.
Manubrio simmetrico Se il corpo è simmetrico rispetto all’asse di rotazione Il momento angolare totale è parallelo all’asse di rotazione Nel caso della.
Lavoro di una forza costante
La forza di gravitazione universale è conservativa
Un proiettile di massa 4.5 g è sparato orizzontalmente contro un blocco di legno di 2.4 kg stazionario su una superficie orizzontale. Il coefficiente di.
La quantità di moto La quantità di moto di un sistema di punti materiali si ottiene sommando le quantità di moto di ciascun punto materiale Ricordando.
La reazione vincolare Consideriamo un corpo fermo su di un tavolo orizzontale. La sua accelerazione è nulla. Dalla II legge di Newton ricaviamo che la.
La forza di gravitazione universale è conservativa
Il corpo rigido È un particolare sistema di punti materiali in cui le distanze, tra due qualunque dei suoi punti, non variano nel tempo un corpo rigido.
Misura della costante elastica di una molla per via statica
Rotazione di un corpo rigido attorno ad un asse fisso
Velocità ed accelerazione
Consigli per la risoluzione dei problemi
Dinamica dei sistemi di punti
HALLIDAY - capitolo 9 problema 1
Urti Si parla di urti quando due punti materiali interagiscono per un intervallo di tempo estremamente breve. si possono sviluppare forze di intensità.
Il centro di massa di corpi simmetrici
I diagramma del corpo libero con le forze agenti
Una sfera di raggio r =1 m è poggiata su un piano orizzontale e mantenuta fissa. Un cubetto di piccole dimensioni è posto in equilibrio instabile sulla.
Consigli per la risoluzione dei problemi
Il lavoro oppure [L]=[F][L]=[ML2T -2] S.I.: 1 Joule = 1 m2 kg s-2
N mg La reazione Vincolare
Dinamica dei sistemi di punti
La forza elettrostatica o di Coulomb
La termodinamica Nello studio della meccanica abbiamo lasciato alcuni problemi aperti L’energia meccanica totale in presenza di forze non conservative,
G.M. - Informatica B-Automazione 2002/03 Estensione della conservazione dellenergia ai sistemi di punti materiali Se tutte le forze interne ed esterne.
G.M. - Edile A 2002/03 Appli cazio ne Si consideri un punto materiale –posto ad un altezza h dal suolo, –posto su un piano inclinato liscio di altezza.
La conservazione della quantità di moto
Physics 2211: Lecture 22, Pg 1 Agenda di oggi Dinamica del centro di massa Momento lineare Esempi.
Pg 1 Agenda di oggi Agenda di oggi Le tre leggi di Newton Come e perchè un oggetto si muove? Dinamica.
Conservazione della quantità di moto
Corso di Fisica - Forze: applicazioni
Parte IV: Dinamica del Punto 2a parte
Complementi di dinamica
GLI URTI IN UNA DIMENSIONE
Corso di Fisica - Quantità di moto e urti
Energia potenziale energia cinetica energia elastica energia di dissipazione urto elastico urto anelastico.
GLI URTI IN UNA DIMENSIONE
del corpo rigido definizione
Esempio -1 Individuare il centro di massa di un sistema di tre particelle di massa m1 = 1kg, m2 = 2 kg, e m3 = 3kg, poste ai vertici di un triangolo.
Esempio 1 Un blocco di massa m scivola lungo una superficie curva priva di attrito come in figura. In ogni istante, la forza normale N risulta perpendicolare.
Esempio 1 Una palla avente una massa di 100 gr viene colpita da una mazza mentre vola orizzontalmente ad una velocità di 30 m/s. Dopo l’urto la palla.
Esempio 2 Consideriamo una molla attaccata al soffitto con un peso agganciato all’estremità inferiore in condizioni di equilibrio. Le forze esercitate.
URTI elastici anelastici e.
1 Lezione IX seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione XIII – terza parte Avviare la presentazione col tasto “Invio”
1 Lezione VI Avviare la presentazione col tasto “Invio”
1 Lezione IX Avviare la presentazione col tasto “Invio”
Conservazione della quantità di moto totale La legge e le sue applicazioni.
Corso di Meccanica e Termodinamica per il CdL in Fisica Corso di Meccanica e Termodinamica per il CdL in Fisica Università degli Studi di Napoli FEDERICO.
Transcript della presentazione:

Urto in una dimensione -Urto centrale L’urto centrale avviene quando il parametro d’urto b è nullo. Le forze sono dirette lungo la congiungente delle due particelle Che coincide con la retta di azione della velocità iniziale Non essendoci forze perpendicolari alla direzione della velocità, non ci saranno accelerazioni perpendicolari alla velocità iniziale Siccome la velocità iniziale ha solo componenti lungo la retta congiungente i due punti materiali Non ci sarà moto perpendicolarmente alla congiungente le due particelle L’uro centrale è un urto unidimensionale. Urto centrale Una sola equazione non basta per determinare le due velocità dello stato finale. Se l’urto è elastico si può aggiungere: Nel caso di urto elastico abbiamo due equazioni indipendenti in due incognite: Il sistema ammette soluzione

Urto centrale elastico-bersaglio fermo Per risolvere il sistema conviene metterlo in questa forma: Urto centrale Dividendo membro a membro la seconda per la prima:

Urto centrale elastico: casi particolari La particella bersaglio, dopo l’urto si muoverà sempre nello stesso verso della particella incidente La particella proiettile invece In caso di forti asimmetrie:

Due automobili A e B di massa rispettivamente 1100 kg e 1400 kg, nel tentativo di fermarsi ad un semaforo, slittano su una strada ghiacciata. Il coefficiente di attrito dinamico tra le ruote bloccate delle auto e il terreno è 0.13. A riesce a fermarsi, ma Be che segue, va a tamponare il primo veicolo. Come indicato in figura, dopo l’urto A si ferma a 8.2 m dal punto di impatto e B a 6.1 m. Le ruote dei due veicoli sono rimaste bloccate durante tutta la slittata. Determinare le velocità delle due vetture subito dopo l’impatto. E la velocità della vettura B prima dell’urto. Applicazione N Fa P

Urto centrale elastico-bersaglio mobile In questo caso sia la velocità della particella 1 che quella della particella 2 sono dirette lungo la congiungente le due particelle. Considerando le componenti delle velocità lungo l’asse x: Urto centrale Operando come nel caso precedente, dividendo membro a membro la seconda per la prima si perviene al seguente risultato: Se le particelle hanno la stessa massa, nell’urto si scambiano le velocità

Un blocco di massa m1=2.0 kg scivola su di un pinao privo di attrito alla velocità di 10 m/s. Davanti a questo blocco, sulla stessa linea e nello stesso verso, si muove a 3.0 m/s un secondo blocco, di massa m2=5.0kg. Una molla priva di massa , con costante elastica k=1120 N/m, è attacata sul retro di m2. Qual è la massima compressione della molla quando i due blocchi si urtano? Quali sono le velocità finale dei due corpi dopo l’urto. Applicazione Quando la molla è alla sua massima compressione i due blocchi sono fermi uno rispetto all’altro Prima della massima compresione si sono avvicinati Successivamente si allontanano La velocità comune dei due blocchi sarà uguale a quella del centro di massa Poiché la quantità di moto si conserva, anche la velocità del centro di massa sarà uguale a quella iniziale: La differenza tra l’energia cinetica iniziale e quella finale è immagazzinata come compressione della molla

Un blocco di massa m1=2.0 kg scivola su di un pinao privo di attrito alla velocità di 10 m/s. Davanti a questo blocco, sulla stessa linea e nello stesso verso, si muove a 3.0 m/s un secondo blocco, di massa m2=5.0kg. Una molla priva di massa , con costante elastica k=1120 N/m, è attacata sul retro di m2. Qual è la massima compressione della molla quando i due blocchi si urtano? Quali sono le velocità finale dei due corpi dopo l’urto. Applicazione Da cui Utilizzando le espressioni per l’uro centrale elastico: