Il centro di massa di corpi simmetrici

Slides:



Advertisements
Presentazioni simili
Curvare in su, curvare in giù
Advertisements

Meccanica aprile 2011 Urti Conservazione della quantita` di moto e teorema dell’impulso Energia cinetica Urti elastici e anelastici Urto con corpi.
Meccanica 8 31 marzo 2011 Teorema del momento angolare. 2° eq. Cardinale Conservazione del momento angolare Sistema del centro di massa. Teoremi di Koenig.
Principio di conservazione della quantità di moto
Dinamica del punto Argomenti della lezione
Urti e forze impulsive “Urto”: interazione che avviene in un tempo t molto breve (al limite infinitesimo) tra corpi che esercitano mutuamente forze molto.
Un asta di massa m e lunghezza l e’ vincolata ad un estremo O,
Applicazione h Si consideri un punto materiale
Urti Si parla di urti quando due punti materiali (o due sistemi di punti materiali) si scambiano energia e quantità di moto in un tempo estremamente breve.
Una forza orizzontale costante di 10 N è applicata a un cilindro di massa M=10kg e raggio R=0.20 m, attraverso una corda avvolta sul cilindro nel modo.
Lavoro ed energia cinetica: introduzione
Centro di massa Consideriamo un sistema di due punti materiali di masse m1 e m2 che possono muoversi in una dimensione lungo un asse x x m1 m2 x1 x2 xc.
Le forze conservative g P2 P1 U= energia potenziale
Il lavoro [L]=[F][L]=[ML-2T -2] S.I.: 1 Joule = 1 m2 kg s-2
Un corpo di massa m= 0.5 kg, che si muove su di un piano orizzontale liscio con velocità v=0.5 m/s verso sinistra, colpisce una molla di costante elastica.
Una sfera di raggio r =1 m è poggiata su un piano orizzontale e mantenuta fissa. Un cubetto di piccole dimensioni è posto in equilibrio instabile sulla.
Manubrio simmetrico Se il corpo è simmetrico rispetto all’asse di rotazione Il momento angolare totale è parallelo all’asse di rotazione Nel caso della.
La forza di gravitazione universale è conservativa
Un proiettile di massa 4.5 g è sparato orizzontalmente contro un blocco di legno di 2.4 kg stazionario su una superficie orizzontale. Il coefficiente di.
La quantità di moto La quantità di moto di un sistema di punti materiali si ottiene sommando le quantità di moto di ciascun punto materiale Ricordando.
La reazione vincolare Consideriamo un corpo fermo su di un tavolo orizzontale. La sua accelerazione è nulla. Dalla II legge di Newton ricaviamo che la.
La forza di gravitazione universale è conservativa
Rotazione di un corpo rigido attorno ad un asse fisso
Velocità ed accelerazione
Consigli per la risoluzione dei problemi
Urto in una dimensione -Urto centrale
Dinamica dei sistemi di punti
HALLIDAY - capitolo 9 problema 1
Urti Si parla di urti quando due punti materiali interagiscono per un intervallo di tempo estremamente breve. si possono sviluppare forze di intensità.
I diagramma del corpo libero con le forze agenti
Una sfera di raggio r =1 m è poggiata su un piano orizzontale e mantenuta fissa. Un cubetto di piccole dimensioni è posto in equilibrio instabile sulla.
Consigli per la risoluzione dei problemi
Dinamica del punto materiale
Il lavoro oppure [L]=[F][L]=[ML2T -2] S.I.: 1 Joule = 1 m2 kg s-2
N mg La reazione Vincolare
Dinamica dei sistemi di punti
L’accelerazione riferita alla traiettoria
Applicazione Auto Camion xAo=0 m xCo=0 m vAox=0 m/s vCox=9.5 m/s
La forza elettrostatica o di Coulomb
Le cause del moto: la situazione prima di Galilei e di Newton
Il prodotto vettoriale
G.M. - Edile A 2002/03 Appli cazio ne Si consideri un punto materiale –posto ad un altezza h dal suolo, –posto su un piano inclinato liscio di altezza.
Il teorema dell’impulso
G.M. - Informatica B-Automazione 2002/03 Estensione della conservazione dellenergia ai sistemi di punti materiali Se tutte le forze interne ed esterne.
Grandezze scalari e vettoriali
G.M. - Edile A 2002/03 Appli cazio ne Si consideri un punto materiale –posto ad un altezza h dal suolo, –posto su un piano inclinato liscio di altezza.
Lezione 4 Dinamica del punto
La conservazione della quantità di moto
Physics 2211: Lecture 22, Pg 1 Agenda di oggi Dinamica del centro di massa Momento lineare Esempi.
Le leggi della dinamica
Conservazione della quantità di moto
Corso di Fisica - Forze: applicazioni
Esempio Un disco rigido omogeneo di massa M=1,4kg e raggio R=8,5cm rotola su un piano orizzontale alla velocità di 15cm/s. Quale è la sua energia cinetica?
Il Movimento Cinematica.
Complementi di dinamica
Corso di Fisica - Quantità di moto e urti
GLI URTI IN UNA DIMENSIONE
PRIMO PRINCIPIO DELLA DINAMICA
del corpo rigido definizione
Esercizi (attrito trascurabile)
1 Lezione IX seconda parte Avviare la presentazione col tasto “Invio”
1 Lezione XIII – terza parte Avviare la presentazione col tasto “Invio”
1 Lezione VI Avviare la presentazione col tasto “Invio”
Esercizio-Tre blocchi di massa rispettivamente m 1 =5Kg, m 2 =2 Kg e m 3 =3Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura).
Prof.ssa Veronica Matteo
Conservazione della quantità di moto totale La legge e le sue applicazioni.
Corso di Meccanica e Termodinamica per il CdL in Fisica Corso di Meccanica e Termodinamica per il CdL in Fisica Università degli Studi di Napoli FEDERICO.
Transcript della presentazione:

Il centro di massa di corpi simmetrici x x1 x2 Centro di massa di una sbarra omogenea Asse di simmetria Centro di simmetria Centro di massa di una disco omogeneo G.M. - Edile A 2002/03

L’elemento oscillante di un pendolo è costituito da una sbarretta di massa ms=0.5kg e lunga 50 cm a cui è attaccata un disco di massa md=1kg di 20cm di diametro. Determinare la posizione del CM. Applicazione x y x y CM della sbarra (0,0.45m) ms=0.5kg CM del Disco (0,0.1m) md=1kg G.M. - Edile A 2002/03

Il centro di massa di corpi continui y dm r x z G.M. - Edile A 2002/03

La velocità del centro di massa Se i vari punti materiali si muovono Anche il centro di massa si muoverà Calcoliamo la sua velocità G.M. - Edile A 2002/03

L’accelerazione del centro di massa Possiamo anche calcolarci l’accelerazione del centro di massa G.M. - Edile A 2002/03

Un’auto di massa 1000 kg è ferma ad un semaforo Un’auto di massa 1000 kg è ferma ad un semaforo. Quando viene il verde (t=0s) parte con una accelerazione costante di 4 m/s2. Nello stesso istante sopraggiunge con velocità costante di 8m/s un camion di massa 2000kg che sorpassa l’auto. A che distanza dal semaforo si troverà il centro di massa del sistema auto camion per t=3.0s? Quale sarà la sua velocità? Applicazione t=0 x O t=3s x O G.M. - Edile A 2002/03

Un’auto di massa 1000 kg è ferma ad un semaforo Un’auto di massa 1000 kg è ferma ad un semaforo. Quando viene il verde (t=0s) parte con una accelerazione costante di 4 m/s2. Nello stesso istante sopraggiunge con velocità costante di 8m/s un camion di massa 2000kg che sorpassa l’auto. A che distanza dal semaforo si troverà il centro di massa del sistema auto camion per t=3.0s? Quale sarà la sua velocità? Applicazione t=0 O x G.M. - Edile A 2002/03

Ricapitoliamo G.M. - Edile A 2002/03

Il teorema del centro di massa dalla definizione di accelerazione del CM Forze interne Le forze dovute alle altre particelle che fanno parte del sistema di punti materiali Forze esterne Le forze dovute alle altre particelle che non fanno parte del sistema di punti materiali G.M. - Edile A 2002/03

Il teorema del centro di massa Risultante delle forze esterne Risultante delle forze interne La risultante delle forze interne è nulla Le forze interne sono a coppia Ogni coppia ha risultante nulla La risultante è la somma di tanti termini tutti nulli Il caso di n=3 G.M. - Edile A 2002/03

Il teorema del centro di massa L’accelerazione del centro di massa è dovuta alle sole forze esterne. il centro di massa si muove come un punto materiale, avente una massa pari alla massa totale del sistema, sottoposto all'azione della risultante delle sole forze esterne agenti sul sistema. I singoli punti possono avere un moto complicato Il moto del centro di massa è influenzato dalle sole forze esterne Il moto del centro di massa rappresenta il moto di insieme del sistema Il moto dell’automobile è determinato dalle forze esterne: la forza peso, la normale esercitata dall’asfalto, la forza di attrito esercitata dall’asfalto, la resistenza passiva offerta dall’aria G.M. - Edile A 2002/03

La quantità di moto La quantità di moto di un sistema di punti materiali si ottiene sommando le quantità di moto di ciascun punto materiale Ricordando l’espressione della velocità del centro di massa La quantità di moto di un sistema di punto materiali è proprio uguale alla quantità di moto del Centro di Massa Centro di massa: massa pari alla massa totale del sistema velocità uguale alla velocità del centro di massa Per quanto riguarda la quantità di moto, il centro di massa rappresenta completamente il sistema di particelle. G.M. - Edile A 2002/03

I equazione cardinale della dinamica dei sistemi di punti materiali La derivata della quantità di moto di un sistema di punti materiali è uguale alla risultante delle sole forze esterne È equivalente al teorema del centro di massa G.M. - Edile A 2002/03

La conservazione della quantità di moto Se la risultante delle forze esterne è nulla la quantità di moto delle singole particelle agenti sul sistema possono variare, ma la quantità di moto totale del sistema rimane costante in modulo, direzione e verso. Un sistema isolato è un sistema molto lontano da altri corpi e quindi non soggetto a forze esterne: la quantità di moto di un sistema isolato si conserva. La conservazione della quantità di moto è equivalente alla terza legge di Newton Noi abbiamo ricavato la conservazione della quantità di moto dalle leggi di Netwon: in realtà il principio di conservazione della quantità di moto è un principio più generale: vale anche al di fuori della meccanica classica. G.M. - Edile A 2002/03

Un’astronave di massa totale M sta viaggiando nelle profondità dello spazio con una velocità vi=2100km/h rispetto al sole. Espelle uno stadio posteriore di massa 0.20M alla velocità relativa u=500km/h rispetto all’astronave, diretta lungo l’asse x. Quanto diventa la velocità dell’astronave rispetto al sole? Applicazione Indichiamo con U la velocità dello stadio posteriore rispetto al sole. Siamo molto lontani da qualsiasi altro corpo, quindi le forze esterne sono nulle. La quantità di moto si conserva. Consideriamo il sole come un sistema di riferimento inerziale La quantità di moto iniziale è diretta lungo l’asse x La quantità di moto finale dello stadio posteriore è anch’essa diretta lungo l’asse x Anche la quantità di moto del resto dell’astronave sarà diretta lungo l’asse x G.M. - Edile A 2002/03

La conservazione parziale della quantità di moto La I equazione cardinale della dinamica dei sistemi è una relazione vettoriale Se il sistema non è isolato, allora la risultante non sarà nulla È possibile che alcune delle componenti della risultante siano nulli Allora si conservano le corrispondenti componenti della quantità di moto G.M. - Edile A 2002/03

Nella figura si vede un vagone ferroviario a pianale basso di massa M che è libero di muoversi senza attrito su un binario rettilineo orizzontale. All’inizio un uomo di massa m sta fermo sul vagone che viaggia verso destra con velocità vo. Quale sarà la variazione di velocità del vagone se l’uomo si metterà a correre verso sinistra con una velocità vrel rispetto al vagone? Si assuma vo=1m/s, vrel=5m/s, m=70kg, M=1000kg. Applicazione In questo caso le forze esterne non sono nulle: peso del vagone, peso dell’uomo, reazione vincolare del binario (solo componente normale). Però le forze sono tutte verticali Si conserva la quantità di moto orizzontale, in particolare quella diretta secondo i binari. x Il sistema di riferimento è quello dei binari (inerziale). vu velocità dell’uomo rispetto ai binari Dai moti relativi G.M. - Edile A 2002/03

Urti Si parla di urti quando due punti materiali (o due sistemi di punti materiali) si scambiano energia e quantità di moto in un tempo estremamente breve. Le forze agenti sulle particelle interagenti sono estremamente intense (forze impulsive!!) G.M. - Edile A 2002/03

Fasi dell’urto fase iniziale prima dell’urto: in cui esiste un moto imperturbato. fase dell’urto: La durata di questa fase è piuttosto piccola rispetto alla durata complessiva del moto. Si produce quindi una brusca variazione nel moto dei due sistemi interagenti È caratterizzata dalla presenza di forze molto intense. Poiché l’urto è istantaneo, le particelle, nella fase dell’urto, non si spostano. fase successiva all'urto: dopo l'interazione, lo stato di moto continua ad essere di nuovo imperturbato. Il CM si trova sempre sul segmento che congiunge le due particelle. L’urto avviene nel CM G.M. - Edile A 2002/03

Impulso della forza F12 F21 Durante l’urto le forze che agiscono sulle particelle interagenti hanno una intensità molto grande (tendente all’infinito). Sono difficili da descrivere. Quello che è importante è l’effetto prodotto Consideriamo una delle due particelle interagenti La particella 1 La sua variazione di quantità di moto, prodotta dalla forza F12, vale: 1 2 Si definisce Impulso della forza F12 la quantità: Rappresentato dall’area sotto la curva La stessa variazione di quantità di moto può essere ottenuta con una forza molto intensa che dura molto poco, o da una forza meno intensa che agisce per un tempo piu lungo. G.M. - Edile A 2002/03

Forza media F12 F21 La forza media è la forza costante che, agendo nell’intervallo tra t1 e t2, provoca la stessa variazione di quantità di moto della forza F12: 1 2 L’impulso in questo caso è rappresentato dall’area del rettangolo di base Dt e altezza F12m l’area del rettangolo di base Dt e altezza F12m è uguale all’area sotto la curva dell’intensità della forza in funzione del tempo G.M. - Edile A 2002/03

Una pallottola da 30 g, con velocità iniziale di 500 m/s penetra per 12 cm in una parete di muratura prima di fermarsi Di quanto si riduce l’energia meccanica della pallottola? Qual è la forza media che ha agito sulla pallottola mentre penetrava nella parete? Quanto tempo ha impiegato la pallottola per fermarsi? Applicazione Prima Usiamo il sistema di riferimento del Laboratorio per descrivere il moto: la parete è ferma in tale sistema il sistema di riferimento è inerziale x Dopo Le forze agenti sono: La forza peso (fa lavoro nullo) La Normale (fa lavoro nullo) La forza di attrito(dinamico) L’energia meccanica totale coincide con l’energia cinetica. Nell’ipotesi di un moto orizzontale come mostrato in figura, non c’è variazione dell’energia potenziale della forza peso Circa 100 mila volte il peso G.M. - Edile A 2002/03

Per calcolaci tempo ha impiegato dalla pallottola per fermarsi, valutiamo l’impulso della forza. Applicazione Prima x La quantità di moto finale è nulla Quella iniziale ha solo la componente x Anche l’impulso avrà solo la componente x Dopo Il proiettile impiega 3.2 centesimi di secondo per fermarsi Questo semplice esempio mostra come le forze negli urti siano molto intense I tempi dell’interazione siano piuttosto piccoli G.M. - Edile A 2002/03

Soluzione dei problemi di urto Sistema isolato Consideriamo dapprima un urto, in cui le particelle interagenti sono così lontane da altre particelle da poter considerare nulle le forze esterne (sistema isolato) Dalla I equazione cardinale dei sistemi ricaviamo che la quantità di moto totale del sistema di particelle interagenti si deve conservare. F12 F21 1 2 Sistema delle particelle interagenti G.M. - Edile A 2002/03

Soluzione dei problemi di urto in presenza di forze esterne Consideriamo ora il caso in cui le particelle interagenti durante l’urto sono sottoposte anche ad alcune forze esterne. La variazione della quantità di moto subita da ciascuna particelle tra t1 e t2 sarà data da: F12 F21 F1est 1 2 F2est Sistema delle particelle interagenti Se durante l’urto la forza esterna è trascurabile rispetto a quella interna Bisogna assicurarsi che le forze esterne, durante l’urto non diventino impulsive G.M. - Edile A 2002/03

Forze esterne impulsive Quali forze mi possono dare fastidio? Quali forze durante l’urto possono diventare impulsive? Tutte quelle forze per cui non abbiamo travato una espressione per calcolare il loro valore! Forze che conservano una intensità finita durante l’urto: Forza peso Forza elastica Gravitazione universale Resistenza passiva Forze che possono diventare impulsive durante l’urto: Componente normale della reazione vincolare N Forze di attrito (attraverso il loro legame con la normale N) Tensione nelle funi G.M. - Edile A 2002/03

Conservazione della quantità di moto Se le forze esterne sono nulle o trascurabili rispetto a quelle impulsive interne Si conserva la quantità di moto del sistema delle particelle interagenti. v2 v1 1 2 F21 F12 1 2 v’1 v’2 Conoscendo le velocità iniziali, si possono determinate le velocità delle particelle dopo l’urto? 3 equazioni con 6 incognite 1 2 Sistema delle particelle interagenti G.M. - Edile A 2002/03

Istante iniziale e finale nello studio dei processi d’urto Se le forze esterne sono assenti allora Le due particelle sono sottoposte solo all’azione delle forze interne che esistono solo durante l’urto. Sia prima che dopo l’urto non sono soggette a forze: si muovono di moto rettilineo uniforme, con quantità di moto costante. i e f possono essere due istanti qualsiasi prima e dopo l’urto. In presenza di forze esterne invece i e f devono essere l’istante immediatamente prima dell’urto e quello immediatamente dopo l’urto. Se si allunga l’intervallo di osservazione La variazione della quantità di moto prodotta dalla forza esterna potrebbe non essere più trascurabile rispetto a quella prodotta dalla forza interna. Non c’è più conservazione della quantità di moto G.M. - Edile A 2002/03

Moto del centro di massa in un processo d’urto Se nell’urto si conserva la quantità di moto Il centro di massa si muove con velocità costante: Il Sistema di riferimento del CM è un sistema di riferimento inerziale Molto utile per risolvere i problemi d’urto. G.M. - Edile A 2002/03

Conservazione parziale della quantità di moto Se tra le forze esterne agenti sulle particelle che si urtano c’è una forza che, durante l’urto potrebbe diventare impulsiva (reazione vincolare, tensione, etc) Non è lecito applicare la conservazione della quantità di moto. In alcuni casi però è possibile stabilire a priori la direzione della forza impulsiva Vuol dire che si conserveranno le componenti della quantità di moto nelle direzioni perpendicolari a quella della forza impulsiva G.M. - Edile A 2002/03

Urti elastici o anelastici Dal punto di vista dell’energia gli urti si classificano Elastici Se l’energia cinetica si conserva Anelastici Quando non si conserva l’energia cinetica Nota Bene: Solo l’energia cinetica è importante. Infatti: Se non ci sono forze esterne non c’è energia potenziale Comunque durante l’urto la posizione delle particelle non varia, non varia neppure l’energia potenziale. Nel caso di urti anelastici, l’energia cinetica può sia diminuire (viene trasformata in altre forme di energia: energia interna dei corpi, riscaldamento dei corpi) ma anche aumentare (l’energia interna dei corpi viene trasformata in energia meccanica: esplosioni) Urti completamente anelastici Quando viene persa tutta l’energia cinetica che è possibile perdere compatibilmente con la conservazione della quantità di moto. N.B. non c’è alcuna correlazione tra la conservazione dell’energia e quella della quantità di moto G.M. - Edile A 2002/03

Urti completamente anelastici Sono quegli urti in cui si perde tutta l’energia cinetica che è possibile perdere compatibilmente con la conservazione della quantità di moto Le due particelle nello stato finale hanno velocità nulla rispetto al centro di massa Poiché al momento dell’urto, entrambe le particelle si trovavano nella posizione del centro di massa Le due particelle emergono dall’urto unite insieme e si muovono con la velocità del CM G.M. - Edile A 2002/03

Soluzione dell’urto completamente anelastico Consideriamo un urto completamente anelastico in cui si conserva la quantità di moto (non ci sono forze esterne impulsive) A cui possiamo aggiungere l’ulteriore condizione: Abbiamo tre equazioni con tre incognite Il problema ammette soluzione Velocità del CM G.M. - Edile A 2002/03

Il pendolo balistico Veniva usato per misurare la velocità dei proiettili sparati da un’arma da fuoco. Consiste in un blocco di legno (o sacco di sabbia) appeso al soffitto con una corda di lunghezza l Il proiettile penetra nel blocco di legno e si ferma rispetto al blocco (l’urto è completamente anelastico) Blocco e proiettile, insieme, dopo l’urto cominceranno ad oscillare come un pendolo Misurando l’ampiezza delle oscillazioni, dalla conoscenza degli altri parametri in gioco, massa del blocco, massa del proiettile e lunghezza del pendolo, è possibile risalire alla velocità iniziale del proiettile G.M. - Edile A 2002/03

Una pallottola da m=30 g, viene sparata orizzontalmente con velocità di 500 m/s contro un blocco di legno di massa M=4kg appeso ad una fune di lunghezza L=2m. La pallottola si conficca nel blocco e forma un tutt’uno con esso. Determinare la perdita di energia meccanica nell’urto. Determinare l’elongazione massima del pendolo Se la pallottola è penetrata nel pendolo per un tratto di 3cm, stimare la forza media che ha frenato la pallottola rispetto al blocco e la durata dell’urto Verificare che lo spostamento subito dal pendolo durante l’urto è trascurabile. Valutare infine la tensione nella fune subito prima e subito dopo l’urto. Applicazione G.M. - Edile A 2002/03

Il pendolo balistico: analisi delle forze Le forze peso non sono impulsive La tensione potrebbe diventare impulsiva durante l’urto. Non possiamo imporre la conservazione della quantità di moto Poiché l’urto dura poco, la posizione del pendolo durante l’urto non varia Il filo durante l’urto resta verticale Tutte le forze esterne durante l’urto sono verticali Si conserva la componente della quantità di moto orizzontale. In particolare: G.M. - Edile A 2002/03

Energia persa nell’urto Quasi tutta l’energia cinetica viene persa durante l’urto a causa delle forze di attrito che si oppongono alla penetrazione del proiettile nel blocco di legno. Il lavoro della altre forze agenti o è nullo o è trascurabile Dx = penetrazione G.M. - Edile A 2002/03

Una pallottola da m=30 g, viene sparata orizzontalmente con velocità di 500 m/s contro un blocco di legno di massa M=4kg appeso ad una fune di lunghezza L=2m. La pallottola si conficca nel blocco e forma un tutt’uno con esso. Determinare la perdita di energia meccanica nell’urto. Determinare l’elongazione massima del pendolo Se la pallottola è penetrata nel pendolo per un tratto di 3cm, stimare la forza media che ha frenato la pallottola rispetto al blocco e la durata dell’urto verificare che lo spostamento subito dal pendolo durante l’urto è trascurabile. Valutare infine la tensione nella fune subito prima e subito dopo l’urto. Applicazione G.M. - Edile A 2002/03

II fase oscillazione L’oscillazione avviene sotto l’azione della forza peso (conservativa) e della tensione. G.M. - Edile A 2002/03

Una pallottola da m=30 g, viene sparata orizzontalmente con velocità di 500 m/s contro un blocco di legno di massa M=4kg appeso ad una fune di lunghezza L=2m. La pallottola si conficca nel blocco e forma un tutt’uno con esso. Determinare la perdita di energia meccanica nell’urto. Determinare l’elongazione massima del pendolo Se la pallottola è penetrata nel pendolo per un tratto di 3cm, stimare la forza media che ha frenato la pallottola rispetto al blocco e la durata dell’urto Verificare che lo spostamento subito dal pendolo durante l’urto è trascurabile. Valutare infine la tensione nella fune subito prima e subito dopo l’urto. Applicazione G.M. - Edile A 2002/03

Una pallottola da m=30 g, viene sparata orizzontalmente con velocità di 500 m/s contro un blocco di legno di massa M=4kg appeso ad una fune di lunghezza L=2m. La pallottola si conficca nel blocco e forma un tutt’uno con esso. Valutare infine la tensione nella fune subito prima e subito dopo l’urto. Applicazione y Prima dell’urto: Subito dopo l’urto, il pendolo è rimasto nella stessa posizione, ma si sta muovendo con velocità Vx: Proiettando su un asse verticale: G.M. - Edile A 2002/03

Proiettile sparato dall’alto La forza FMn è impulsiva (forza interna) Poiché la lunghezza della corda ideale non varia La tensione T ha, durante l’urto, una intensità comparabile con la forza FMn La tensione T è impulsiva Se la corda non è sufficientemente robusta si può rompere (viene superato il carico di rottura) Non si ha conservazione della quantità di moto nella direzione verticale G.M. - Edile A 2002/03

Urto in due dimensioni Consideriamo un urto in cui una della due particelle è ferma (senza forze esterne) Particella 1 proiettile Particella 2 bersaglio b parametro d’urto La retta di azione della velocità v1 e il punto P2 definiscono un piano Le forze di interazione sono lungo la congiungente Quindi contenute nel piano Non c’è moto perpendicolarmente al piano precedentemente individuato (accelerazione nulla, velocità iniziale nulla) L’urto è piano. Se l’urto è elastico si può aggiungere: G.M. - Edile A 2002/03

Urto in una dimensione -Urto centrale L’urto centrale avviene quando il parametro d’urto b è nullo. Le forze sono dirette lungo la congiungente delle due particelle Che coincide con la retta di azione della velocità iniziale Non essendoci forze perpendicolari alla direzione della velocità, non ci saranno accelerazioni perpendicolari alla velocità iniziale Siccome la velocità iniziale ha solo componenti lungo la retta congiungente i due punti materiali Non ci sarà moto perpendicolarmente alla congiungente le due particelle L’urto centrale è un urto unidimensionale. Urto centrale Una sola equazione non basta per determinare le due velocità dello stato finale. Se l’urto è elastico si può aggiungere: Nel caso di urto elastico abbiamo due equazioni indipendenti in due incognite: Il sistema ammette soluzione G.M. - Edile A 2002/03

Urto centrale elastico-bersaglio fermo Per risolvere il sistema conviene metterlo in questa forma: Urto centrale Dividendo membro a membro la seconda per la prima: G.M. - Edile A 2002/03

Urto centrale elastico: casi particolari La particella bersaglio, dopo l’urto si muoverà sempre nello stesso verso della particella incidente La particella proiettile invece In caso di forti asimmetrie: G.M. - Edile A 2002/03

Due automobili A e B di massa rispettivamente 1100 kg e 1400 kg, nel tentativo di fermarsi ad un semaforo, slittano su una strada ghiacciata. Il coefficiente di attrito dinamico tra le ruote bloccate delle auto e il terreno è 0.13. A riesce a fermarsi, ma B che segue, va a tamponare il primo veicolo. Come indicato in figura, dopo l’urto A si ferma a 8.2 m dal punto di impatto e B a 6.1 m. Le ruote dei due veicoli sono rimaste bloccate durante tutta la slittata. Determinare le velocità delle due vetture subito dopo l’impatto. E la velocità della vettura B prima dell’urto. Applicazione N Fa P G.M. - Edile A 2002/03

Urto centrale elastico-bersaglio mobile In questo caso sia la velocità della particella 1 che quella della particella 2 sono dirette lungo la congiungente le due particelle. Considerando le componenti delle velocità lungo l’asse x: Urto centrale Operando come nel caso precedente, dividendo membro a membro la seconda per la prima si perviene al seguente risultato: Se le particelle hanno la stessa massa, nell’urto si scambiano le velocità G.M. - Edile A 2002/03

Un blocco di massa m1=2.0 kg scivola su di un piano privo di attrito alla velocità di 10 m/s. Davanti a questo blocco, sulla stessa linea e nello stesso verso, si muove a 3.0 m/s un secondo blocco, di massa m2=5.0kg. Una molla priva di massa , con costante elastica k=1120 N/m, è attaccata sul retro di m2. Qual è la massima compressione della molla quando i due blocchi si urtano? Quali sono le velocità finale dei due corpi dopo l’urto. Applicazione Quando la molla è alla sua massima compressione i due blocchi sono fermi uno rispetto all’altro Prima della massima compressione si sono avvicinati Successivamente si allontanano La velocità comune dei due blocchi sarà uguale a quella del centro di massa Poiché la quantità di moto si conserva, anche la velocità del centro di massa sarà uguale a quella iniziale: La differenza tra l’energia cinetica iniziale e quella finale è immagazzinata come compressione della molla G.M. - Edile A 2002/03

Un blocco di massa m1=2.0 kg scivola su di un piano privo di attrito alla velocità di 10 m/s. Davanti a questo blocco, sulla stessa linea e nello stesso verso, si muove a 3.0 m/s un secondo blocco, di massa m2=5.0kg. Una molla priva di massa , con costante elastica k=1120 N/m, è attaccata sul retro di m2. Qual è la massima compressione della molla quando i due blocchi si urtano? Quali sono le velocità finale dei due corpi dopo l’urto. Applicazione Da cui Utilizzando le espressioni per l’uro centrale elastico: G.M. - Edile A 2002/03