Stato limite ultimo di sezioni in c.a. soggette a pressoflessione

Slides:



Advertisements
Presentazioni simili
Corso di Tecnica delle Costruzioni I - Teoria delle Esercitazioni
Advertisements

CALCOLO A ROTTURA (S.L.U.) DIAGRAMMI MOMENTO CURVATURA
NORME TECNICHE PER LE COSTRUZIONI DM
PARETI Negli edifici in cemento armato, molto spesso il ruolo di trasferire le azioni sismiche è affidato alle pareti di taglio. Il maggior vantaggio dell'inserimento.
Elementi sollecitati da tensioni tangenziali: il taglio
Il metodo semiprobabilistico agli stati limite: il calcestruzzo armato
Flessione retta elastica travi rettilinee (o a debole curvatura)
2. PROPRIETA’ STRUTTURALI DEL LEGNO
Il termine nodo si riferisce a zone in cui concorrono più elementi strutturali. Fino a non molti anni fa, si pensava che i nodi si trovassero comunque.
Metodi di verifica agli stati limite
MODELLAZIONE DELLA RISPOSTA NON LINEARE
INTRODUZIONE AL CORSO DI TECNICA DELLE COSTRUZIONI
LEZIONE N° 9 – IL CEMENTO ARMATO PRECOMPRESSO
Determinazione della curvatura nello stato fessurato
Corso di Tecnica delle Costruzioni – I° Modulo – A/A
Richiami sui metodi di misura della sicurezza
LEZIONE N° 7 – IL CEMENTO ARMATO PRECOMPRESSO Generalità
LEZIONE N° 3 – STATO LIMITE ULTIMO DI INSTABILITA’
Corso di Tecnica delle Costruzioni – I° Modulo – A/A
Corso di Tecnica delle Costruzioni – I° Modulo – A/A
Il punzonamento Pier Paolo Rossi.
La sollecitazione di torsione
Alberto Franchi Teoria e Progetto di Costruzioni e Strutture
Il punzonamento Teramo, 6-7 marzo 2004 Pier Paolo Rossi.
Analisi globali per edifici in muratura (a cura di Michele Vinci)
STS s.r.l - Software Tecnico Scientifico
LE FONDAZIONI.
Limitazioni geometriche e Armature
SLE DI DEFORMAZIONE IN TRAVI DI CEMENTO ARMATO
VERIFICA ASTE AGLI S.L.U.. VERIFICA ASTE AGLI S.L.U.
Valutazione delle cadute di tensione nelle travi in c.a.p
Restauro statico delle strutture in cemento armato
Corso di Tecnica delle Costruzioni II - Teoria delle Esercitazioni
Università degli studi di salerno
Valutazione delle cadute di tensione nelle travi in c.a.p
Lezione n° 12 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
SLE DI DEFORMAZIONE IN TRAVI DI CEMENTO ARMATO
Calcolo dei pilastri in Cemento Armato allo SLU
Introduzione ai moduli E ed H
Pareti di sostegno - verifiche
Franco Angotti, Maurizio Orlando Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Firenze Progetto con modelli tirante-puntone.
IL PROGETTO DELLE TRAVI IN C.A. SOGETTE A TORSIONE
- materiali - analisi strutturale - stati limite ultimi
SLE DI FESSURAZIONE IN TRAVI DI CEMENTO ARMATO
STATI LIMITE DI ESERCIZIO
PROGETTAZIONE MECCANICA I – A.A
- materiali - analisi strutturale - stati limite ultimi
Lezione n° 13 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
GUIDA ALL’USO DELL’EUROCODICE 2 NELLA PROGETTAZIONE STRUTTURALE
(a cura di Michele Vinci)
Consolidamento di edifici in muratura (a cura di Michele Vinci)
Perdite istantanee e Cadute lente in travi di CAP
Università degli Studi Roma Tre – Facoltà di Ingegneria – Corso di Cemento Armato precompresso A/A Richiami di geometria delle Aree Università.
IL CEMENTO ARMATO PRECOMPRESSO
Statica delle sezioni in cap
Metodi di verifica agli stati limite
Corso di Tecnica delle Costruzioni I - Teoria delle Esercitazioni
Corso di Tecnica delle Costruzioni I - Teoria delle Esercitazioni
Università degli Studi di Roma Tre - Facoltà di Ingegneria Laurea magistrale in Ingegneria Civile in Protezione… Corso di Cemento Armato Precompresso –
Verifica allo SLU di sezioni inflesse in cap
Università degli Studi di Roma Tre - Facoltà di Ingegneria
Il calcolo in fase elastica delle sezioni composte c.a.- c.a.p.
Progetto di travi in c.a.p isostatiche
Progetto di travi in c.a.p isostatiche
Progetto di travi in c.a.p isostatiche
Progetto di travi in c.a.p isostatiche
Restauro statico delle strutture in cemento armato
Teoria delle Piastre e dei Gusci
UNIVERSITA’ DEGLI STUDI DI FERRARA Facoltà di Ingegneria Corso di Laurea Specialistica in Ingegneria Civile Corso di COSTRUZIONI IN C.A. E C.A.P. ESERCIZI.
Corso di Laurea in Ingegneria Civile
Transcript della presentazione:

Stato limite ultimo di sezioni in c.a. soggette a pressoflessione Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 LEZIONE N° 2 Stato limite ultimo di sezioni in c.a. soggette a pressoflessione SLU per sezioni rettangolari in c.a. con doppia armatura determinazione del campo di rottura determinazione del momento ultimo Esempio: verifica di sezione rettangolare a doppia armatura Prescrizioni normative

N c e Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Definizione del Problema Si consideri una sezione rettangolare in c.a. con doppia armatura soggetta a pressione applicata al centro di pressione c con eccentricità e. Ragioni di equivalenza statica permettono di considerare la sollecitazione come composta da una forza applicata al baricentro della sezione e un momento flettente pari a M=Ne. Si vuole effettuare la verifica di resistenza allo stato limite ultimo, valutando quindi lo sforzo Normale e il Momento ultimo che la sezione è capace di esplicare nel rispetto delle condizioni di equilibrio e di congruenza della sezione. N c e

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Definizione del Problema Naturalmente esistono infinite coppie N,M che rispettano tali condizioni. Resta dunque individuata una regione detta dominio di resistenza al di fuori del quale il limite ultimo della sezione viene superato. La verifica consiste dunque nel verificare che Mu(Nd)  Md controllando che Nd non superi il valore massimo esplicabile dalla sezione. In quanto segue si farà riferimento all’EC2 Esempio di dominio di Resistenza Mu Nd

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Ipotesi di lavoro (generali) Le sezioni si conservano piane (legge lineare delle deformazioni) Il calcestruzzo teso non è reagente Non vi è scorrimento relativo tra acciaio e cls (perfetta aderenza)

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Ipotesi di lavoro (allo stato limite ultimo) Legge costitutiva del Cls (tensione-deformazione)

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Ipotesi di lavoro (allo stato limite ultimo) Legge costitutiva dell’acciaio

EC2 Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Ipotesi di lavoro (Stato limite ultimo) Leggi costitutive del Cls e dell’Acciaio EC2 Tratto parabolico   Legge costitutiva dell’acciaio k   10%° 2%° 3.5%° fyd/Es La norma permette di tener conto per l’acciaio di un incrudimento k con deformazione massima al 1% Legge costitutiva del CLS

EC2 Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Ipotesi di lavoro (Stato limite ultimo) Leggi costitutive del Cls e dell’Acciaio EC2 La legge costitutiva del cls può essere sostituita dallo stress block (diagramma rettangolare equivalente alla parabola rettangolo) con altezza pari a 0.8 volte l’altezza dell’asse neutro rispetto al lembo superiore della sezione

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Ipotesi di lavoro (Stato limite ultimo) CLASSI DI RESISTENZA DEL CALCESTRUZZO (EC2)

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Campi di rottura (4) (3) (2) su sy cu c1 3/7 h h b (1) (0) As’ d’ As (0’) (0,0’) piccola eccentricità (Compressione) (1) sez. fortemente armata (2) Sez. normalmente armata (3) Sez. debolmente armata (4) Piccola eccentricità (Trazione) Campi di Rottura

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del campo di rottura Il campo di rottura associato ad una determinata sezione dipende oltre che dalla quantità di armatura (come succede nella flessione semplice) anche dall’entità dello sforzo normale N. All’aumentare di N si passa da sezioni duttili a sezioni fragili fino a schiacciamento per compressione uniforme, che per sezioni simmetriche corrisponde al caso di pressione centrata. Come per il caso di flessione è utile poter determinare a priori il campo di rottura associato ad una determinata armatura e sforzo normale. A tale scopo è sufficiente determinare il valore di N che corrisponde alle linee di separazione tra i diversi campi di rottura. Sarà poi sufficiente confrontare il valore di calcolo Nd con i vari N prima calcolati per individuare in quale intervallo ci si colloca.

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del campo di rottura Piccola eccentricità : compressione centrata Nel caso di compressione centrata l’equilibrio alla traslazione della sezione conduce alla seguente equazione: fcd C C’+C’’ C’ C C’’ Il coefficiente 0.8 nella componente associata al csl dipende dal fatto che la normativa impone nel caso di compressione centrata che il coefficiente c venga aumentato del 25%. Dovrà ovviamente risultare che nd<nmax altrimenti l’equilibrio alla traslazione risulterà impossibile

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del campo di rottura Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del campo di rottura Piccola eccentricità : sezione interamente compressa Nel passaggio tra campo 0 e campo 1 la sezione risulta ancora interamente compressa con l’asse neutro passante per il lembo inferiore della sezione. cu fcd La deformazione dell’acciaio inferiore è immediatamente ricavabile da semplici considerazioni geometriche C’ C C’’ a.n. In termini adimensionalizzati si ha:

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del campo di rottura Grande eccentricità : retta di separazione campo 0 e campo 1 Nel passaggio tra campo 0 e campo 1 la sezione risulta parzializzata con l’asse neutro che taglia la sezione in corrispondenza dell’armatura tesa. cu C’ In termini adimensionalizzati si ottiene la semplice espressione: C a.n.

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del campo di rottura Grande eccentricità : retta di separazione campo 1 e campo 2 Nel passaggio tra campo 1 e campo 2 la sezione risulta parzializzata con l’asse neutro che taglia la sezione ad una distanza yc dal lembo superiore. L’acciaio inferiore risulta essere teso e snervato. cu L’asse neutro yc si trova con semplici proporzioni geometriche C’ yc C a.n. T y

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del campo di rottura Grande eccentricità : retta di separazione campo 2 e campo 3 Nel passaggio tra campo 2 e campo 3 la sezione risulta essere in condizioni di rottura bilanciata, ossia sia il cls che l’acciaio hanno raggiunto la loro tensione massima. Inoltre l’acciaio inferiore è naturalmente snervato. cu yc C’ a.n. C su T L’acciaio compresso risulta in genere snervato per travi con h>30 cm

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del campo di rottura Grande eccentricità : Esempio di rottura in campo 2

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del campo di rottura Grande eccentricità : retta di separazione campo 3 e campo 4 Nel passaggio tra campo 3 e campo 4 la sezione risulta essere completamente tesa. La resistenza è affidata alle sole armature. a.n. T’ sl T L’acciaio superiore risulta in genere non snervato per travi con h>20 cm

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del campo di rottura Noti gli sforzi normali corrispondenti alle linee di separazione tra i diversi campi di rottura, questi ultimi possono essere facilmente individuati e visualizzati sul diagramma di interazione M-N Campo 2 Campo 1 e2 e1 Campo 0 e0 N2 N0 N1 Nmax M/N > h/30-20 cm (Eurocodice 2)

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del Momento Ultimo Per la determinazione del Momento Ultimo della sezione considerata occorre seguire in sequenza i seguenti due passi: Determinazione della posizione dell’asse neutro Determinazione del valore del Momento Ultimo Nelle prossime slide si fornisce una espressione del Momento Ultimo in relazione al campo di rottura precedentemente determinato

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del Momento Ultimo Piccola eccentricità : compressione eccentrica (n0 < n < nmax) 2%° Determinazione asse neutro c fcd La posizione dell’asse neutro yc si determina a partire dall’equazione di equilibrio alla traslazione della sezione. L’acciaio inferiore risulta generalmente non snervato per cui: y0=3/7 h C’ d c1 yc C’’ C a.n. K’=yc/h

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del Momento Ultimo Piccola eccentricità : compressione eccentrica (n0 < n < nmax) 2%° Determinazione asse neutro c fcd Il valore max di C è limitato dalla massima resistenza a compressione ammessa per il cls y0=3/7 h C’ c1 yc C’’ C a.n.

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del Momento Ultimo Piccola eccentricità : compressione eccentrica (n0 < n < nmax) C C’ C’’ 2%° fcd a.n. c yc Determinazione Momento Ultimo L’equazione di equilibrio alla rotazione attorno al baricentro geometrico della sezione ci fornisce il Momento Ultimo della sezione

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del Momento Ultimo Grande eccentricità : Collasso nel campo 1 (n1 < n < n0) Determinazione Asse neutro cu fcd La posizione dell’asse neutro yc si determina a partire dall’equazione dei equilibrio alla traslazione della sezione. L’acciaio inferiore risulta per definizione non snervato. L’equilibrio alla traslazione si scrive come segue: C’ yc C a.n. s< sy T Equazione algebrica di 2° grado Sostituendo la precedente nella equazione di equilibrio alla traslazione si ha:

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del Momento Ultimo Grande eccentricità : Collasso nel campo 1 (n1 < n < n0) Determinazione Momento Ultimo cu fcd L’equazione di equilibrio alla rotazione attorno al baricentro geometrico della sezione ci fornisce il Momento Ultimo della sezione. C’ yc C a.n. s< sy T

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del Momento Ultimo Grande eccentricità : Collasso nel campo 2 (n2 < n < n1) Determinazione Asse neutro cu fcd La posizione dell’asse neutro yc si determina a partire dall’equazione dei equilibrio alla traslazione della sezione. L’acciaio inferiore risulta certamente snervato e quindi nell’ipotesi che anche l’acciaio compresso sia snervato l’equilibrio alla traslazione si scrive : C’ C a.n. yc s> sy T HP: acciaio compresso snervato

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del Momento Ultimo Grande eccentricità : Collasso nel campo 2 (n2 < n < n1) Determinazione Asse neutro cu fcd Nel caso l’ipotesi di armatura compressa snervata non sia verificata occorre esprimere l’equazione alla traslazione in funzione di K ottenendo l’equazione di secondo grado con incognita la stessa K C’ 2%° C a.n. yc s> sy T Equazione per la determinazione dell’asse Neutro nel caso che l’armatura compressa non risulti snervata

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del Momento Ultimo Grande eccentricità : Collasso nel campo 2 (n2 < n < n1) Determinazione Momento Ultimo cu fcd L’equazione di equilibrio alla rotazione attorno al baricentro geometrico della sezione ci fornisce il Momento Ultimo della sezione. C’ C a.n. yc s> sy T

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del Momento Ultimo Grande eccentricità : Collasso nel campo 3 (n3 < n < n2) Determinazione Asse neutro  c<cu fcd La posizione dell’asse neutro yc si determina a partire dall’equazione dei equilibrio alla traslazione della sezione. L’acciaio inferiore risulta certamente snervato e quindi nell’ipotesi che anche l’acciaio compresso sia snervato l’equilibrio alla traslazione si scrive : C a.n. C’ yc s= sl T Equazione per la determinazione dell’asse Neutro nel caso che l’armatura compressa risulti snervata

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del Momento Ultimo Grande eccentricità : Collasso nel campo 3 (n3 < n < n2) Determinazione Asse neutro  c<cu fcd Nel caso l’ipotesi di armatura compressa snervata non sia verificata occorre esprimere l’equazione alla traslazione in funzione di K ottenendo l’equazione di secondo grano con incognita la stessa K C a.n. C’ yc s= su T Equazione per la determinazione dell’asse Neutro nel caso che l’armatura compressa risulti non snervata

Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Università degli Studi di Roma Tre Facoltà di Ingegneria Corso di Tecnica delle Costruzioni – I° Modulo – A/A 2006-07 Stato limite ultimo di sezioni in c.a.: Pressoflessione Retta Determinazione del Momento Ultimo Grande eccentricità : Collasso nel campo 3 (n3 < n < n2) Determinazione Momento Ultimo  c<cu fcd L’equazione di equilibrio alla rotazione attorno al baricentro geometrico della sezione ci fornisce il Momento Ultimo della sezione. C a.n. C’ yc s= su T