Calcolo delle Probabilità

Slides:



Advertisements
Presentazioni simili
Dr. Marta Giorgetti Esercizi Calcolo combinatorio, spazio degli eventi, probabilità, indipendenza, teorema di Bayes.
Advertisements

Elementi di calcolo delle probabilità
La probabilità nei giochi
La Matematica tra Gioco e Realtà
8) GLI INTERVALLI DI CONFIDENZA
Le distribuzioni di probabilità continue
2. Introduzione alla probabilità
Definizione di probabilità, calcolo combinatorio,
Variabili aleatorie discrete e continue
La probabilità.
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
Corsi Abilitanti Speciali Classe 59A III semestre - 3
1 2. Introduzione alla probabilità Definizioni preliminari: Prova: è un esperimento il cui esito è aleatorio Spazio degli eventi elementari : è linsieme.
Bruno Mario Cesana Stefano Calza
Inferenza Statistica Le componenti teoriche dell’Inferenza Statistica sono: la teoria dei campioni la teoria della probabilità la teoria della stima dei.
Definizioni di probabilità
Definizioni Chiamiamo esperimento aleatorio ogni fenomeno del mondo reale alle cui manifestazioni può essere associata una situazione di incertezza. Esempi:
3. Processi Stocastici Un processo stocastico è una funzione del tempo i cui valori x(t) ad ogni istante di tempo t sono v.a. Notazione: X : insieme di.
Metodi Probabilistici, Statistici e Processi Stocastici Università Carlo Cattaneo Emanuele Borgonovo Metodi Probailistici, Statistici e Processi Stocastici.
Marco Riani STATISTICA A – K (60 ore) Marco Riani
Calcolo delle Probabilità
Torna alla prima pagina Sergio Console Calcolo Combinatorio e cenni di calcolo delle Probabilità Istituzioni di Matematiche Scienze Naturali.
Elementi di Calcolo delle Probabilità
Le Variabili Casuali Corso di Teoria dell’Inferenza Statistica 1
Processi Aleatori : Introduzione – Parte I
Corso di biomatematica Lezione 2: Probabilità e distribuzioni di probabilità Davide Grandi.
LA PROBABILITA’.
Corso di Probabilità e Inferenza 1
Impostazione Assiomatica del Calcolo della Probabilità
Lezione 4 Probabilità.
Lezione 4 Probabilità.
PROBABILITÀ La probabilità è un giudizio che si assegna ad un evento e che si esprime mediante un numero compreso tra 0 e 1 1 Evento con molta probabilità.
MOLTIPLICAZIONE COMBINATORIA
Orientamento universitario
La probabilità Schema classico.
Calcolo delle Probabilità
Teorie e Tecniche di Psicometria
1.PROBABILITÀ A. Federico ENEA; Fondazione Ugo Bordoni Scuola estiva di fonetica forense Soriano al Cimino 17 – 21 settembre 2007.
Unità 2 Distribuzioni di probabilità Misure di localizzazione Misure di variabilità Asimmetria e curtosi.
Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,
Esercizi con soluzione
Probabilità ed eventi casuali (Prof. Daniele Baldissin)
Torna alla prima pagina Sergio Console Calcolo delle Probabilità seconda parte Istituzioni di Matematiche Scienze Naturali.
STATISTICA PER LA RICERCA SPERIMENTALE E TECNOLOGICA
PROBABILITA’.
Impostazione Assiomatica del Calcolo della Probabilità
Cap. 15 Caso, probabilità e variabili casuali Cioè gli ingredienti matematici per fare buona inferenza statistica.
Calcolo combinatorio e probabilità
Laurea Ing EO/IN/BIO;TLC D.U. Ing EO 10 PROBABILITA’ E VARIABILI ALEATORIE.
Calcolo delle Probabilità
Probabilità e Variabili Casuali
Calcolo delle probabilità a cura di Maurizio Brizzi
2) PROBABILITA’ La quantificazione della ‘possibilità’ del verificarsi di un evento casuale E è detta probabilità P(E) Definizione classica: P(E) è il.
La variabile casuale (v.c.) è un modello matematico in grado di interpretare gli esperimenti casuali. Infatti gli eventi elementari  che compongono lo.
Spiegazione di alcuni concetti
Distribuzioni di probabilità di uso frequente
PROBABILITÀ Corsi Abilitanti Speciali Classe 59A III semestre - 2.
Eventi aleatori Un evento è aleatorio (casuale) quando non si può prevedere con certezza se avverrà o meno I fenomeni (eventi) aleatori sono studiati.
Elaborazione statistica di dati
Elementi di teoria delle probabilità
16) STATISTICA pag.22. Frequenze frequenza assoluta (o frequenza): numero che esprime quante volte un certo valore compare in una rilevazione statistica.
In alcuni casi gli esiti di un esperimento possono essere considerati numeri naturali in modo naturale. Esempio: lancio di un dado In atri casi si definisce.
La probabilità matematica
1 DISTRIBUZIONI DI PROBABILITÁ. 2 distribu- zione che permette di calcolare le probabilità degli eventi possibili A tutte le variabili casuali, discrete.
METODI E TECNOLOGIE PER L’INSEGNAMENTO DELLA MATEMATICA Lezione n°17.
1 VARIABILI CASUALI. 2 definizione Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico). Esempi l’esito.
1 TEORIA DELLA PROBABILITÁ. 2 Cenni storici i primi approcci alla teoria della probabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli)
Probabilità Definizione di probabilità La definizione di probabilità si basa sul concetto di evento, ovvero sul fatto che un determinato esperimento può.
Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento.
Teoria dei Sistemi di Trasporto Tematica 4: Elementi minimi di teoria della probabilità.
Transcript della presentazione:

Calcolo delle Probabilità

Introduzione La probabilità si occupa di fenomeni non deterministici Fenomeno deterministico: se l’esperimento è condotto nelle stesse condizioni si trova lo stesso risultato Esempi: Moto di un grave Traiettoria di una pallina in un biliardo Fenomeno non deterministico: anche se gli esperimenti sono condotti nelle stesse condizioni si trovano risultati diversi Esempi: Risultato del lancio di una moneta Traiettoria di 100 palline in un biliardo Vincita in una lotteria Numero di lanci di un dado per ottenere un 6 La probabilità si occupa di fenomeni non deterministici

Spazio campione: Insieme S di tutti i risultati dell’esperimento Esempio: Nel caso del lancio di una moneta S={Testa, Croce} Nel caso dei numeri di lanci di un dado necessari per avere 6 S=N (numeri naturali)

E3 E1 E5 E6 E2 E4

Gli eventi semplici sono costituiti da uno solo dei possibili risultati di un esperimento aleatorio. Gli eventi composti sono costituiti da da più di uno dei possibili risultati di un esperimento aleatorio. Un evento composto può sempre essere scomposto in eventi semplici. Se un evento non risulta ulteriormente scomponibile è per definizione un evento semplice.

E Evento Fenomeno casuale Evento elementare Spazio Campionario Un qualsiasi sottoinsieme dello spazio campionario, ovvero un insieme di eventi elementari Evento E Si usa dire che l’evento E si è realizzato se il fenomeno si manifesta con uno degli eventi elementari che appartengono ad E

E = , E A = , B = , Lancio di un dado Si realizza se viene faccia 3 o faccia 6 Faccia “pari” Modi di descrivere l’evento Faccia “dispari”

Si dice infinito non numerabile uno spazio campione i cui eventi semplici sono tali per cui, fissati due di essi, è sempre possibile determinarne almeno un terzo intermedio. Esempio. Lo spazio costituito dagli eventi “esatto momento della nascita” è uno spazio infinito non numerabile. Infatti, prese due qualunque persone nate ognuna in un certo momento, è sempre possibile individuarne una terza la cui nascita si colloca tra le due precedenti.

Si possono distinguere tre tipi di spazio campione: - spazio campione finito - spazio campione infinito numerabile - spazio campione infinito non numerabile

P Finito Infinito Fenomeno casuale o prova Lancio di un dado Spazio campionario (campione) Finito Infinito Evento elementare Durata di una lampadina max

Gli eventi mutuamente esclusivi possono essere rappresentati da insiemi disgiunti.

Eventi incompatibili A B Eventi incompatibili A

A Partizione di uno spazio campionario B A B A Eventi incompatibili

Partizione di uno spazio campionario B Partizione di a) b) Partizione finita Partizione infinita

Partizione dello Spazio Campionario Si dice che gli eventi A1,…,Ak appartenenti ad W formano una partizione dello spazio campionario se: (1) (2) cioè se sono a due a due incompatibili e necessari.

Proprietà Unione Intersezione Commutativa Idempotenza Associativa Distributiva Inoltre, si ha:

Leggi di De Morgan

Probabilità Ogni tentativo di dare una definizione rigorosa dei concetti probabilistici più elementari si trova di fronte ad un problema; infatti, non solo esistono differenti formalizzazioni e assiomatizzazioni della probabilità ma a queste corrispondono, in generale, molteplici nozioni intuitive di probabilità spesso assai diverse fra loro. Al di là delle differenze di carattere formale un elemento comune posseduto da tutte le forme di probabilità riguarda il suo significato intuitivo di valutazione della possibilità che un dato evento possa accadere o meno.

DEFINIZIONE DI PROBABILITA’ A priori (o matematica, o classica, o di Pascal) A posteriori (o statistica, o frequentistica, o legge empirica del caso) Soggettiva Probabilità: regola che a ogni evento E associa un numero reale compreso tra 0 e 1 p: E p(E)

Definizioni di probabilità: Classica (Pascal) Se un evento si può verificare in N modi mutuamente esclusivi ed ugualmente probabili, se m di questi possiede una caratteristica E, la probabilità di E è il rapporto tra il numero di casi favorevoli e il totale dei casi possibili (tutti equiprobabili)

Esempi Nel caso del lancio di una moneta S={Testa, Croce}. p(Testa)=1/2 (casi favorevoli 1, possibili 2) Lanciamo due dadi e calcoliamo la probabilità che la somma dei punti sia 4 Per semplicità scriviamo i numeri estratti come coppie: Le coppie di 6 numeri sono 6 * 6= 36 = numero di casi possibili; I casi favorevoli sono dati dalle coppie (1,3), (2,2) e (3,1) e sono quindi 3. Pertanto p(somma 4 in 2 lanci)=3/36=1/12

Problemi della definizione classica: Discussione Problemi della definizione classica: non sempre posso dire che eventi sono equiprobabili (asimmetrie - esempio: ho un dato truccato) il numero di casi deve essere finito Aspetti positivi: è una definizione operativa Determinazione della probabilità usando il calcolo combinatorio Definizione assiomatica

Definizione frequentistica (o a posteriori) Richard von Mises Si ripete un esperimento N volte e se un evento con una certa caratteristica E si verifica m volte, la frequenza relativa di successo è f(E) dà una stima per la probabilità di E

In base all’impostazione frequentista, per probabilità di un evento si intende il limite a cui tende la frequenza relativa delle prove in cui l’evento si verifica, quando il numero di prove tende all’infinito: con s = numero di “successi” e n = numero di prove.

Problemi della definizione frequentistica: In situazioni concrete il passaggio al limite su cui si basa la definizione non può essere effettuato È necessario ripetere l’esperimento un gran numero di volte

Definizione soggettiva (o bayesiana) Bernoulli, De Finetti Probabilità: grado di fiducia che una persona ha nel verificarsi dell’evento. Prezzo p che si è disposti a pagare per ricevere 1 se l’evento si verifica e 0 se non si verifica. Esempio: se lancio un dado il prezzo equo per la scommessa “esce il 4” dipende dalle informazioni di cui si dispone; se il dado non è truccato si può assumere p=1/6 Problemi della definizione soggettiva: Non è operativa Una valutazione soggettiva non è necessariamente obiettiva

Definizione di probabilità. Def. 4. Classica La probabilità di un evento A è il rapporto tra il numero di casi favorevoli di A e il numero di casi possibili, ammesso che questi siano equiprobabili. Def. 5.. Frequentista (o legge empirica del caso). In una serie di prove di un dato esperimento, ripetuto un gran numero di volte in circostanze più o meno simili, ciascuno degli eventi possibili si manifesta con una frequenza che è circa uguale alla sua probabilità. L’approssimazione si riduce al crescere del numero di prove. Def. 6. Soggettivista. La probabilità è la valutazione che il singolo individuo può coerentemente formulare, in base alle proprie conoscenze, del grado di avverabilità di un evento.

Assiomi del Calcolo delle Probabilità. Ricordando che un assioma (o postulato) è una proposizione che è considerata vera e non viene dimostrata nel contesto in cui è svolta la teoria in questione, Il C.P. presenta i seguenti assiomi: 1. 2.

 Probabilità L’interpretazione geometrica 1 3 4 2 L’area complessiva è uguale a 1 1  L’area di un insieme di superfici che non si sovrappongono è la somma delle aree delle singole superfici 3 L’area di ogni sottoinsieme è sicuramente positiva 4 2

Operazioni sugli eventi (sugli insiemi) Se un insieme E non contiene nessun elemento (evento elementare) viene detto insieme vuoto e si indica con

Unione di insiemi (o eventi) B A A A A A A

Lancio di un dado E = , A = , ,

Unione B A Associativa C Commutativa Ecc. A B C

Intersezione B A A A A A A A A

Intersezione B Associativa A C Commutativa Ecc. C A B

Negazione A

Teoremi fondamentali del C.P. Siano A e B due eventi incompatibili allora Teo.1. Teo.2. Teo.3. Teo.4.

ESERCIZI

Disposizioni semplici Disposizioni con Ripetizione A volte puo essere difficile, o almeno noioso, determinare per elencazione diretta gli elementi di uno spazio campione finito. CALCOLO COMBINATORIO Disposizioni semplici Disposizioni con Ripetizione Permutazioni semplici Permutazioni con oggetti identici Combinazioni Semplici Combinazioni con Ripetizione

Problema: determinare il numero di elementi di un insieme finito Calcolo Combinatorio Problema: determinare il numero di elementi di un insieme finito elenco diretto (lungo!) Esempio:in un menù ho 3 antipasti, 2 primi, 4 secondi. Quanti sono i possibili pasti completi (includono tutte le 3 portate - scelte una sola volta)? Diagramma ad albero

Diagramma ad albero ………. ……….. 3 x 2 x 4 = 24 pasti completi A1 A2 A3

“Contare le scelte” Se gli insiemi A1, A2, …, Ak contengono n1, n2, …, nk elementi Ho N= n1 n2 … nk modi di scegliere prima un elemento di A1 , poi un elemento di A2 … ... infine un elemento di Ak In particolare: se n1 = n2 =…= nk =n allora N=nk = numero delle disposizioni con ripetizione di n oggetti a gruppi di k

Disposizioni = gruppi di oggetti che si possono formare scegliendo k oggetti tra n oggetti (I gruppi devono differire per qualche oggetto e per l’ordine) Disposizioni con ripetizione: si può ripetere lo stesso oggetto Esempio: Determinare il numero di schedine del totocalcio si devono giocare per essere sicuri di fare 14 Le possibili schedine sono 314= 4.782.969

Disposizioni semplici (senza ripetizione) di n oggetti tra k (≤n) D(n,k) Non si può ripetere lo stesso oggetto Esempio: Ad un gran premio di formula 1 partecipano 20 piloti. I primi tre classificati vanno sul podio.. Quante sono le possibili terne di piloti sul podio? Il primo classificato può essere un qualunque pilota tra 20, Il secondo uno qualunque tra i restanti 19, il terzo uno tra 18 Quindi: D(20,3)=20*19*18 In generale: D(n,k)=n*(n-1)*…*(n-k+1)

Permutazioni Esempio: P(n) = D(n,n)=n*(n-1)*… 2*1=n! = numero dei modi in cui si possono ordinare n oggetti P(n) = D(n,n)=n*(n-1)*… 2*1=n! Esempio: Quanti anagrammi (non necessariamente di senso compiuto) si possono formare della parola FOGLI Ho 5 possibili scelte per la prima lettera, 4 per la seconda, … 1 per la quinta, quindi gli anagrammi sono P(5)=5*4*3*2*1=5!=120

Combinazioni = disposizioni a meno dell’ordine= gruppi di oggetti che si possono formare scegliendo k oggetti tra n oggetti (I gruppi devono differire per qualche oggetto ma non per l’ordine)= Esempio Quante squadre di pallacanestro si possono formare con 8 giocatori Sono le combinazioni di 5 persone scelte tra 8 =

Esercizi In quanti modi 10 persone possono sedersi su una panchina che ha solo 4 posti? (Si risolva l'esercizio due volte, una volta considerando importante l'ordine in cui si siedono e una no). In quanti modi diversi si possono sedere 7 persone in un tavolo rotondo? Supponiamo di estrarre per 40 volte una pallina da un'urna contenente palline numerate da 1 a 365 ( dopo ciascuna estrazione la pallina estratta viene nuovamente messa nell'urna). Quanti sono i possibili risultati diversi? Quanti sono i possibili risultati in cui i 40 numeri estratti risultano tutti diversi tra loro? Si deve costituire un comitato di 3 membri, rappresentanti ciascuno gli studenti, i docenti e il personale amministrativo. Se ci sono 4 candidati per gli studenti, 3 per i docenti e 2 per il personale amministrativo, si determini quanti comitati differenti si possono formare.

Esercizi Dovete preparare un dolce, disponete di una cesta con 10 uova di cui ve ne serviranno solo 2 per l'impasto. Ma vi ricordate che il giorno prima avete posto in quel cesto 4 uova vecchie di due settimane. Qual è la probabilità di aver utilizzato almeno un uovo non fresco? Intorno ad un tavolo rotondo si dispongono a caso 5 uomini e 5 donne. Qual è la probabilità che ogni donna sia seduta tra due uomini? Qual è la probabilità di fare tre volte 6 lanciando tre volte un dado non truccato?

Probabilità condizionata e indipendenza stocastica Esempio: un’urna contiene 15 palline rosse e 5 nere. Calcoliamo la probabilità di ottenere in 2 estrazioni consecutive senza reimbussolamento una pallina rossa e poi una nera: A:=estraggo una rossa B:=estraggo una nera p(A)=15/20=3/4 La probabilità di estrarre una nera dopo aver estratto una rossa è 5/19. La conoscenza dell’evento A ha ridotto lo spazio dei campioni Dati due eventi A e B, si dice probabilità di B condizionata ad A p(B|A) la probabilità di B calcolata sapendo che si è verificato A. (E’ ovvio che si può definire una probabilità condizionata al verificarsi di A soltanto se A è possibile.)

Regola di moltiplicazione: p(B|A) = 5/19 La probabilità di estrarre prima una rossa e poi una nera è p(AB)=p(A)p(B|A)=3/4*5/19=15/76 Regola di moltiplicazione:

p(B|A) in funzione di p(A) e p(AB) se p(A)≠0 Esempio: trovare la probabilità che con un lancio di un dado si ottenga un numero < 5, sapendo che il risultato del lancio è dispari B:={ottengo un numero < 5} A:={ottengo un dispari} p(B)=2/3, p(A)=1/2, A B={1,3}, p(A B)=1/3 p(B|A)=p(A B)/p(A)=(1/3)/(1/2)=2/3

Esercizio La seguente tabella rappresenta la frequenza mensile in cui dei ragazzi vedono il telefilm “Friends” Numero di volte al mese  Maschi  Femmine  Totale  0  4  5 9  1 - 5  7  9  16  6 - 10  21  23  44  11 - 15  11  9  20  >15  3  5  8  Totale  46  51  97 Scelgo una persona a caso. Qual è la probabilità che non veda mai il telefilm? p(0)=9/97 Se è un maschio, qual è la probabilità che non veda mai il telefilm? p(0|M)=4/46

Indipendenza stocastica Se per due eventi A e B p(A|B)=p(A) si dice: l’evento A è stocasticamente indipendente da B Esempi: Nell’esercizio precedente: non vedere mai il telefilm “Friends” ed essere maschio non sono stocasticamente indipendenti Siano A:={una persona è alta più di 1 metro e 75} B:={una persona non mangia Nutella} Supponiamo che p(A)=0.5, p(B)=0.3, p(AB)=0.15 Allora p(A|B)=p(AB)/p(B)=0.15/0.3=0.5=p(A) Dunque A è stocasticamente indipendente da B.

Indipendenza stocastica Nota: p(B|A)=p(AB)/p(A)=0.15/0.5=0.3=p(B) anche B è stocasticamente indipendente da A. Questo non è casuale: A è stoc. indipendente da B B è stoc. indipendente da A e diciamo “A e B sono indipendenti”

Esempio: in un’urna ci sono 10 palline rosse e 12 nere. Estraiamo dall’urna una pallina poi la rimettiamo nell’urna (estrazione con reimbussolamento). Siano A1={estraggo una pallina rossa alla prima estrazione} A2={estraggo una pallina rossa alla seconda estrazione} L’aver estratto una rossa alla prima estrazione non influenza la probabilità che la seconda sia rossa A1 e A2 sono indipendenti

Regola di moltiplicazione per eventi indipendenti Esempio: Nel caso dell’estrazione con reimbussolamento dell’esempio precedente la probabilità di estrarre entrambe le volte una pallina rossa è p(A1A2)=p(A1)p(A2)=(10/22)2 Vale la seguente regola di moltiplicazione per eventi indipendenti A e B: p(AB)=p(A)p(B) Nota: non confondere i concetti di “eventi disgiunti” ed “eventi indipendenti”. Due eventi disgiunti non sono mai indipendenti (se cosi fosse avrei p(AB)=p(ø)=0=p(A)p(B), quindi p(A) o p(B) sarebbe nulla). In realtà due eventi disgiunti sono fortemente dipendenti: se un evento è realizzato non può esserlo l’altro.

Esercizio Si hanno tre urne. U1 ha 2 palline bianche e 2 nere U2 ha 1 pallina bianca e 3 nere U3 ha 4 palline bianche e 2 nere Si sceglie un’urna a caso e si estrae una pallina. Qual è la probabilità di estrarre una pallina bianca? U1 bianca U2 bianca U3 bianca 1/2 1/3 1/3 1/4 1/3 2/3 P(bianca)=1/2 * 1/3 + 1/4 * 1/3 + 2/3 * 1/3=17/36

Teorema delle probabilità totali Dr. Daniela Morale Se B è un evento che si verifica insieme ad n eventi incompatibili A1,…,An, che rappresentano una partizione dello spazio campionario effetto cause L’utilità del teorema sta nel fatto che talvolta P(A) è difficile da calcolare direttamente, mentre è più facile calcolare le probabilità P(A/Bi) e poi ricostruire P(A) dalla formula

Esercizio In un Gran Premio di Formula 1 la probabilità di pioggia è del 30%. La probabilità che il pilota Mazzacane vinca se piove è dello 40%, e dello 10% se non piove. Qual è la probabilità che vinca Mazzacane? Sia P={piove} M={vince Mazzacane} 0.3 P 0.4 M 0.7 Pc 0.1 M p(M)=0.3*0.4+0.7*0.1=0.19

Teorema di Bayes effetto causa Se B è un evento che si verifica insieme ad n eventi incompatibili A1,…,An se sappiamo che B si è verificato, ci si può porre il problema di calcolare la probabilità che B venga da uno di tali eventi, un generico Ai effetto causa

Esercizio (continuazione) In un Gran Premio di Formula 1 la probabilità di pioggia è del 30%. La probabilità che il pilota Mazzacane vinca se piove è dello 40% e dello 10%, se non piove. Se vince Mazzacane qual è la probabilità che piova? Sia P={piove} M={vince Mazzacane} 0.3 P 0.4 M 0.7 Pc 0.1 M

Esercizio Sia C l’evento: la nuova sede di scienze sarà pronta nel 2019 e sia E : l’impresa a cui è dato l’appalto fallirà prima del 2018. Se la probabilità che la ditta fallisca prima del 2018 è del 60% e la probabilità che la sede sia pronta è dello 0.15 o dello 0.75 a seconda se la ditta fallisce o no prima del 2018, calcolare la probabilità che se la sede è pronta in tempo, la ditta sia non fallita prima del 2018 E p(C|E)=0.15 C p(E)=0.60 C Ec p(C| Ec)=0.75 p(Ec)=0.40

Si trova allora p(Ec | C)=0.30/0.39=0.77 Da trovare p(Ec | C) Nella formula del teorema di Bayes A numeratore: moltiplicare i numeri del ramo relativo a S-E (quello in basso): p(Ec) * p(C | Ec)=0.40 * 0.75 = 0.30 A denominatore: somma dei prodotti delle probabilità di entrambi i rami p(E)*p(C | E)+p(Ec) * p(C |  Ec)= =0.60 * 0.15 + 0.40 * 0.75 = 0.39 Si trova allora p(Ec | C)=0.30/0.39=0.77

Esercizio di riepilogo La seguente tabella mostra 1000 candidati di una scuola per infermieri classificati secondo il punteggio riportato all’esame di ingresso all’università e la qualità della scuola superiore da cui provenivano Dire qual è la probabilità che un candidato 1. Abbia avuto un punteggio basso all’esame. 2. Si sia diplomato in una scuola ottima 3. Abbia avuto un punteggio basso e si sia diplomato in una scuola ottima. 4. Ammesso che si sia diplomato in una scuola ottima, abbia avuto un punteggio basso

Dunque, una v.c. è una regola (una funzione) che permette di assegnare un valore numerico ad ogni risultato dell’esperimento. Dalla definizione è evidente che dato uno spazio campionario W è possibile costruire infinite v.c. (si osserva che tale funzione non deve essere necessariamente biunivoca).

COME SI ASSOCIANO LE PROBABILITA’ ALLE VARIABILI ALEATORIE?

In questo modo la distribuzione di probabilità di Y diventa:

Costruiamo una v.c. e le corrispondenti probabilità in due fasi: 1. Ad ogni evento di W si associa uno ed un solo numero reale X(e). Questa operazione definisce una v.c. X. 2. Ad ogni possibile valore di X(.) si associa una probabilità Pr[X]. Questa operazione definisce la distribuzione di probabilità della v.c. X. Si osserva che mentre la regola da adottare è arbitraria in quanto dipende da ciò che vogliamo che la v.c. interpreti, lo stesso non è vero per la determinazione della distribuzione di probabilità Pr[X] in quanto quest’ultima è legata alle probabilità degli eventi elementari Pr[e].

Anziché specificare le singole P[X] si cercherà, ove possibile, di determinare la relazione funzionale che lega queste probabilità, sintetizzata in una funzione f(x). Ciò sarà necessario quando la v.c. X è di tipo continuo o discreto con un numero molto elevato di valori. In alcuni casi, sarà necessario calcolare la probabilità che X assuma un valore minore o uguale a xk, cioè Questa funzione è detta funzione di ripartizione (f.r.) ed è uguale a:

Proprietà della f.r. F(.): 1. 2. 3. La rappresentazione di F(x) è una “funzione a gradini”.

Valore atteso e varianza Per le variabili discrete è possibile definire un valore atteso E[x] ed una varianza Var[x] che sono analoghe alle misure di posizione e dispersione del valore medio e dello scarto quadratico medio:

Valore atteso e varianza non coincidono con media e scarto quadratico medio Per un numero di tentativi molto elevato è ragionevole che si identifichino le fi e le pi.

Distribuzioni di probabilità continue y y x x a b Sono descritte da funzioni. L’area sottesa dalla curva tra due valori (es. a-b) è la probabilità che la variabile casuale assuma valori compresi tra a e b

Si presuppone l’esistenza di una funzione f(x) t.c. Si definisce poi la probabilità che X sia compresa fra a e b nel modo seguente: Questa definizione soddisfa gli assiomi della teoria della probabilità. La funzione f(x) è detta densità di probabilità

f(y), non è la probabilità, ma è proporzionale (a meno di un infinitesimo) alla probabilità di un intervallo <<sufficientemente piccolo>>

La probabilità che X prenda un valore nell’intervallo [a,b] è l’ area sotto la pdf fra a e b.   La funzione di distribuzione (o ripartizione) F(x), di una variabile aleatoria X, ed è definita per x da

f(x) L’integrale è la probabilità che la variabile casuale assuma un valore in un intervallo e dipende dalla densità di probabilità f(x) XB x XA

La funzione f(x) non è una probabilità, è solo il suo integrale su un intervallo (che ha il significato di probabilità). Nel caso discreto invece, la distribuzione di probabilità f(xk) è per definizione la probabilità P(X=xk)

Distribuzioni discrete e densità continue sono oggetti matematici di tipo diverso, non confrontabili fra loro. Lo strumento che consente di confrontare variabili aleatorie continue e discrete sono invece le rispettive funzioni di distribuzione.

Variabili continue: limite del caso discreto f(x)

Valore atteso per variabili continue prob di avere x Somma Variabili discrete

Varianza per variabili continue probabilità di x Scarto quadratico Somma Variabili discrete

Def. 11. Momenti semplici di ordine r. Se X è una v.c. il momento di ordine r, con r naturale, è definito dalla seguente: Nel caso continuo. Nel caso discreto Si osserva che per r=1 si ottiene il valore atteso (aspettativa) di X.

Def. 12. Momenti centrali di ordine r. Se X è una v.c. il momento centrale di ordine r, con r naturale, è definito dalla seguente: Nel caso continuo Nel caso discreto Si osserva che per r=2 si ottiene la varianza di X.

Il teorema di Bayes nel caso di variabili aleatorie continue assume la seguente formulazione Dove f è la fuzione di densità di probabilità della variabile aleatoria B