Principi di Interferometria – I

Slides:



Advertisements
Presentazioni simili
Le linee di trasmissione
Advertisements

Facciamo Luce Il Cuneo D'Aria.
Ricerca di Chiappori Silvia & Ferraris Sonia
Interferenza nei film sottili
INTEFERENZA DEL SINGOLO FOTONE
Cap. VI La diffrazione 1. Il Principio di Huygens
Diffrazione da apertura circolare
Interferenza Diffrazione (Battimenti)
Onde elettromagnetiche
Raccolta dati Set up esperimento di diffrazione
1 Le onde meccaniche Le onde sono perturbazioni che si propagano trasportando energia ma non materia 1.
Lo spettro della luce LASER
(una interferenza nel caso di una sola fenditura)
In Italia ci sono due antenne EVN da 32 m, una a Medicina (Bologna) e una a Noto (Sicilia). In un futuro prossimo, entrerà a fare parte di questa rete.
Ingrandimento: rapporto immagine / oggetto
Airy disk e Apertura numerica
Prova di recupero corso di Fisica 4/05/2004 Parte A
II Prova in itinere corso di Fisica 4 A.A. 2000/1
Corso di Fisica B, C.S.Chimica, A.A
Diffrazione di Fresnel
INTENSITA SU UNO SCHERMO IN UNA INTERFERENZA TRA DUE SORGENTI PUNTIFORMI Alberto Martini.
Richiami di ottica fisica: interferenza tra 2 sorgenti coerenti
Strumentazione per bioimmagini
Diffrazione di Fraunhofer e di Fresnel
Fenomeni di interferenza. Sorgenti luminose coerenti
Il reticolo di diffrazione
TECNICHE SPERIMENTALI
La dimensione delle Stelle Stefano Covino INAF / Osservatorio Astronomico di Brera Gruppo Astrofili Deep SpaceGruppo Astrofili Deep Space (Lecco) - 6 marzo.
Luce Cremaschini Claudio D’Arpa Maria Concetta Gallone Giovanni Jordan Julia Macchia Davide Parziale Gianluca Punzi Danila De Rose Francesco.
LUCE Serafino Convertini Alessandra Forcina Paolo De Paolis
LA POLARIZZAZIONE.
2° Turno – Dal 9 all’11 luglio 2012
Interferenza L’interferenza Il principio di Huygens
FENOMENI INTERFERENZIALI
FENOMENI DIFFRATTIVI •Il principio di Huygens;
Prova di Fisica 4 (5 crediti) COGNOME………………….. 25/02/2011 NOME……………………….. 2) Due lenti convergenti, entrambe di lunghezza focale f = 20 cm, distano tra.
Limitazioni ‘strumentali’ del prodotto telerilevato
Sorgente monocromatore monitorcampione analizzatorecontatore FIG. 1.
OTTICA Ottica geometrica Ottica fisica Piano Lauree Scientifiche
Geometria DH in foro Tipi di fasi presenti nelle indagini in foro Onde P ed S dirette; Onde P ed S rifratte; Onde P ed S riflesse; Onde dovute.
Interferenza due o piu` onde (con relazione di fase costante)
p= 8.97 Ne KHz (Ne = densità degli elettroni liberi in cm-3)
La luce Quale modello: raggi, onde, corpuscoli (fotoni)
Corrente (o conteggi) di buio
Interferenza e diffrazione
Onde Sismiche.
LA NATURA DELLA LUCE Di Claudia Monte.
La luce Gruppo 1: Maurilio Fava, Chiara Maranò, Marina Pellegrino, Michela Ponzo. Gruppo 2: Amelia Caretto, Giorgia De Virgiliis, Elisa.
5. Le onde luminose Diffrazione e interferenza.
12. Le onde elettromagnetiche
FILTRI.
OTTICA Ottica geometrica Ottica fisica Progetto Lauree Scientifiche
Laurea Ing. EO/IN/BIO;TLC D.U. Ing EO 3
Interferometria ottica-infrarossa in Astrofisica Esame Scuola VLTI, Porto, 28 Maggio – 8 Giugno 2007 Dottorando: Mario Giuseppe Guarcello.
Lo spettro di frequenze della radiazione elettromagnetica dallo spazio RADIAZIONE = Onda elettromagnetica ma anche = Particella E=h Natura della radiazione.
Esperienza di interferenza di singolo elettrone con doppia fenditura e sensore ad alta risoluzione temporale in un TEM.
II Prova di recupero del corso di Fisica 4 A.A. 2000/1
Esercizi numerici 1) Secondo le norme dell’Agenzia Regionale Prevenzione e Ambiente dell’Emilia-Romagna per l’esposizione ai campi a radiofrequenza, il.
Prova di recupero corso di Fisica 4 8/05/2006 I parte
Prova di esame del corso di Fisica 4 A.A. 2005/6 II appello di Settembre 22/9/06 NOME………….....…. COGNOME…………… ……… ) Un raggio di luce.
I0 n I Prova in itinere corso di Fisica 4 A.A. 2001/2
Prova di esame del corso di Fisica 4 A.A. 2006/7 I appello di Settembre del 10/9/07 NOME………….....…. COGNOME…………… ……… ) Due onde luminose.
3) (6 punti) Si consideri la situazione in figura con il sole allo Zenit (incidenza normale) sulla superficie del mare. Si assuma per l’acqua l’indice.
1. Caratteristiche generali delle onde
14/11/15 1. La luce Teoria corpuscolare (Newton): la luce è composta da particelle che si propagano in linea retta Teoria ondulatoria (Huygens-Young):
Prova di esame del corso di Fisica 4 A.A. 2010/11 19/9/11 NOME………….....…. COGNOME…………… ……… ) Un sottile foglio metallico separa da.
1 Ponti Radio Satellitari I.S.I.S.S. “F. FEDELE” di Agira (EN) Sez. I.T.I. “S. CITELLI” di REGALBUTO Prof. Mario LUCIANO MODULO 5: GUIDE D’ONDA Lezioni.
INTERFEROMETRO (Michelson)
Principi di Interferometria – I
Transcript della presentazione:

Principi di Interferometria – I Università “Tor Vergata” – Corso di Laboratorio di Astrofisica – Prof. Buonanno Principi di Interferometria – I Dr. Simone Antoniucci, INAF - OAR VLA

Perché

Risposta dello strumento Imaging con un telescopio singolo  Sorgente in cielo con distribuzione di luminosità O  PSF dello strumento Risposta dello strumento

Imaging con un telescopio singolo Sorgente puntiforme all’infinito  diffrazione di Fraunhofer Apertura circolare  figura di Airy  : Lambda di osservazione D : Diametro dell’apertura J1 : Funzione di Bessel di 1° tipo Risoluzione angolare (criterio di Rayleigh)

Optical Transfer Function Imaging con un telescopio singolo Risposta del telescopio Analizziamo la risposta in termini di frequenze (spaziali)  Trasformata di Fourier OTF Optical Transfer Function Power Spectrum of the PSF D/ f

(pupilla del telescopio) Imaging con un telescopio singolo OTF Esiste una frequenza di taglio D/: il singolo telescopio funziona come un filtro passa-basso Le basse frequenze sono “pesate” maggiormente nella OTF Come funziona il campionamento delle frequenze da parte del telescopio? D/ f fmax= D/   = /D risoluzione telescopio  massima frequenza campionata alte frequenze spaziali  piccole scale spaziali più piccole scale spaziali campionate dai punti esterni dello specchio del telescopio (a distanza reciproca D) Specchio primario (pupilla del telescopio) Un singolo telescopio campiona TUTTE le frequenze spaziali tra 0 e D/

Imaging con un telescopio singolo D/ spatial frequency OTF D/ spatial frequency OTF D/ spatial frequency OTF

Due telescopi: un semplice interferometro Vogliamo incrementare la risoluzione angolare del nostro strumento 1) Aumentare il diametro D del telescopio B D Risoluzione angolare sarà data da  = /D Oppure, basandoci su quanto detto prima: B 2) posizionare 2 telescopi a distanza reciproca B (baseline) Risoluzione angolare sarà data da  = /B Un interferometro campiona “UNA” frequenza spaziale (B/l) alla volta (B>>D)

Esperimento di Young: interferenza sorgente  schermo con 2 fori  osserviamo figura risultante sul piano focale si osservano frange di interferenza B S1 S2 I P Φ = differenza di fase  = fattore di coerenza spaziale  = /B

Esperimento di Young con due telescopi :-) Sorgente puntiforme all’infinito Due telescopi con aperture circolari di diametro D, a distanza B osservo frange di interferenza modulate dalla figura di Airy del singolo telescopio Le frange hanno ampiezza  = /B

Optical Transfer Function Due telescopi: un semplice interferometro Analizziamo la risposta in termini di frequenze (spaziali)  Trasformata di Fourier OTF Optical Transfer Function B2 B1 B D/ f B/ Con la tecnica interferometrica campioniamo alte frequenze spaziali  accesso a alte risoluzioni angolari  θ ~ λ/B Più baselines  più frequenze  più informazioni

Ricapitolando… /B Diametro D Baseline B Singola apertura 2 Aperture Piano focale Piano focale OTF OTF B/ D/ spatial frequency D/ spatial frequency

Più baseline  più frequenze campionate  più informazioni Ricapitolando… Un singolo telescopio campiona TUTTE le frequenze spaziali tra 0 e D/  = /D OTF B2 B1 B D/ f B/ Un interferometro campiona “UNA” frequenza spaziale (B/l) alla volta  = /B B>>D Più baseline  più frequenze campionate  più informazioni Un singolo telescopio è un interferometro “perfetto” che osserva su tutte le baseline di lunghezza compresa tra 0 e D Un interferometro è uno strumento per misurare le componenti di Fourier dell’immagine di una sorgente

Come (radio)

Principi di osservazione 2 radiotelescopi fissi a distanza B (baseline) sorgente emette onda radio monocromatica, fronti d’onda piani Caso I Sorgente allo zenit Onde arrivano in fase Onde combinate interferiscono costruttivamente Caso II Sorgente si sposta di un angolo =/2B Onde arrivano in controfase Onde combinate interferiscono distruttivamente  output nullo ~ B θ B Segnale in uscita Interferenza costruttiva Interferenza distruttiva θ B Segnale in uscita

Principi di osservazione Al variare di  riavrò interferenze costruttive per: A seguito della rotazione terrestre il segnale in uscita mostrerà ciclicamente una modulazione forte e debole (nulla). La separazione angolare fra 2 posizioni in cui abbiamo interferenza costruttiva è: ∆θ≈λ/B Esempi: =1m B=100m  =1/100 ≈ 0.5° t ≈ 2 min =5cm =6GHz B=10km   ≈ 1’’ t ≈ 67ms A t t Intuitivamente: Sorgenti puntiformi (A, B) mostreranno variazioni ampie di segnale attraversando le linee di visibilità Sorgenti estese (C) produrranno una modulazione di minore ampiezza (simulatanea presenza di coppie di punti sulla sorgente che interferiscono costruttivamente e distruttivamente) B C t c c c c

Esempio I: osservazioni equatoriali 2 radiotelescopi all’equatore, baseline in direzione E-W sorgente estesa sorgenti puntiformi non risolte C interferenza distruttiva B ∆θ≈λ/B interferenza costruttiva A λ Polo nord

Esempio I: osservazioni equatoriali 2 radiotelescopi all’equatore, baseline in direzione E-W Equatore celeste “Ventagli” di visibilità (visione dall’alto) ∆θ≈λ/B N A B Equatore celeste E W “Ventagli” di visibilità C c c c c S

Esempio II: osservazioni polari 2 radiotelescopi in vicinanza del polo Polo nord interferenza costruttiva ∆θ≈λ/B interferenza distruttiva λ sorgente puntiforme A Equatore polo nord celeste

Esempio I: osservazioni equatoriali 2 radiotelescopi in vicinanza del polo NCP Polo nord celeste “Ventagli” di visibilità

Esempio III: osservazioni generiche 2 radiotelescopi, data baseline e posizione della sorgente Le linee di visibilità formano dei circoli celesti attorno alla direzione della baseline

Ricostruzione ideale di una (pseudo)immagine… Abbiamo una serie di misure in cui abbiamo identificato le linee di visibilità La sorgente si troverà su una delle linee individuate Sovrapponendo le varie osservazioni (set di linee) otteniamo una pseudoimmagine della regione in esame, in cui identifichiamo la posizione della sorgente Possiamo anche visualizzare ogni misura ottenuta con una data baseline come un’immagine: osserviamo un pattern di frange nel campo (in direzione normale alla baseline)  sommando i vari pattern otteniamo una “immagine” del campo (shading method)

Quanto

Risposta ad una sorgente puntiforme Sorgente puntiforme emette radiazione monocromatica di frequenza . I due telescopi intercettano i fronti d’onda piani Siano E1 e E2 i campi elettrici misurati dai due telescopi. B θ s b Bcos La differenza di fase Φ è data da Campo elettrico risultante Oscillazione ad alta frequenza  modulata da oscillazione a bassa frequenza Φ/2 (battimento)

Potenza dell’onda ( E2) Risposta ad una sorgente puntiforme Oscillazione ad alta frequenza  modulata da oscillazione a bassa frequenza Φ/2 =5cm, =6GHz, B=10km  ≈ 1’’ T() ≈ 17ns T(Φ) ≈ 67ms Potenza dell’onda ( E2)

Risposta ad una sorgente puntiforme Mediando su un periodo T tale che: T() << T << T(Φ) (cos2  ½) Risposta (nel caso di somma dei segnali)

Risposta ad una sorgente puntiforme Eleviamo al quadrato il campo elettrico totale (potenza  E2) media media Termine di interferenza Per descrivere l’interferenza possiamo allora considerare il prodotto E1E2

(è quel che si fa nel caso pratico) Risposta ad una sorgente puntiforme Risposta (nel caso di moltiplicazione dei segnali) (è quel che si fa nel caso pratico)

Trattamento del segnale in un radiointerferometro

Risposta ad una sorgente puntiforme B θ s b Bcos Pattern di frange per una una sorgente puntiforme

“A che tante facelle?” – G. Leopardi VLTI