Proprietà dinamiche degli strumenti di misura

Slides:



Advertisements
Presentazioni simili
Primary Italian Saying How You Are.
Advertisements

Trieste, 26 novembre © 2005 – Renato Lukač Using OSS in Slovenian High Schools doc. dr. Renato Lukač LinuxDay Trieste.
Sfogliandomi… Viaggio tra me e me alla scoperta dellaltro… A travel between me and myself discovering the other…
Preposizioni semplici e articolate
Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria Azienda Ospedaliera Luigi Sacco - Milano WP4: Cumulative Assessment Group refinement.
I numeri, l’ora, I giorni della settimana
L’esperienza di un valutatore nell’ambito del VII FP Valter Sergo
Cache Memory Prof. G. Nicosia University of Catania
Teoria e Tecniche del Riconoscimento
Parametri Acustici (ISO 3382)
A. Oppio, S. Mattia, A. Pandolfi, M. Ghellere ERES Conference 2010 Università Commerciale Luigi Bocconi Milan, june 2010 A Multidimensional and Participatory.
DG Ricerca Ambientale e Sviluppo FIRMS' FUNDING SCHEMES AND ENVIRONMENTAL PURPOSES IN THE EU STRUCTURAL FUNDS (Monitoring of environmental firms funding.
La stenosi carotidea a rischio: evoluzione dell’inquadramento US
A direct measurement of the mirror thermal noise Paolo Amico Università degli studi di Perugia and INFN sez. Perugia ILIAS - GW Meeting, May 2004.
Grammar Tips. Meanings of verbs in the present May describe things that are continuing over a period of time.
Interrogativi Asking and answering questions in italiano.
© and ® 2011 Vista Higher Learning, Inc.4B.1-1 Punto di partenza Italian uses two principal tenses to talk about events in the past: the passato prossimo.
Cancer Pain Management Guidelines
Il presente del congiuntivo (the present subjunctive)
Il presente del congiuntivo (the present subjunctive)
Dipartimento di Matematica Applicata Università di Firenze Multiband transport models for semiconductor devices Giornata di lavoro sulle Nanoscienze Firenze.
Raffaele Cirullo Head of New Media Seconda Giornata italiana della statistica Aziende e bigdata.
J0 1 Marco Ronchetti - Corso di Formazione Sodalia – Febbraio 2001 – Modulo Web Programming Tomcat configuration.
Biometry to enhance smart card security (MOC using TOC protocol)
Quale dei seguenti composti può comportarsi da acido di Broensted ? Quale è la relativa reazione con una base? Cl -, HSO 4 -, NH 4 +, NH 3, H 2 S, OH -
TIPOLOGIA DELLE VARIABILI SPERIMENTALI: Variabili nominali Variabili quantali Variabili semi-quantitative Variabili quantitative.
Ergo : what is the source of EU-English? Standard British English? Standard American English? Both!!!! See morphology (use of British.
DETERMINATION OF THE CRITICAL MICELLE CONCENTRATION (cmc) OF SDS
Metodi di simulazione numerica in Chimica Fisica Dario Bressanini Universita degli Studi dellInsubria III anno della Laurea triennale in Scienze Chimiche.
2000 Prentice Hall, Inc. All rights reserved. 1 Capitolo 3 - Functions Outline 3.1Introduction 3.2Program Components in C++ 3.3Math Library Functions 3.4Functions.
Laurea specialistica in Scienza e Ingegneria dei Materiali
Magnetochimica AA Marco Ruzzi Marina Brustolon
Queuing or Waiting Line Models
DISSIMILARITIES AND MATCHING BETWEEN SYMBOLIC OBJECTS Prof. Donato Malerba Department of Informatics, University of Bari, Italy ASSO.
Le regole Giocatori: da 2 a 10, anche a coppie o a squadre Scopo del gioco: scartare tutte le carte per primi Si gioca con 108 carte: 18 carte.
Players: 3 to 10, or teams. Aim of the game: find a name, starting with a specific letter, for each category. You need: internet connection laptop.
Compito desame del Svolgimento della Sezione 5: CONTROLLORI Esempio preparato da Michele MICCIO.
LHCf Status Report Measurement of Photons and Neutral Pions in the Very Forward Region of LHC Oscar Adriani INFN Sezione di Firenze - Dipartimento di Fisica.
Alcuni moduli per processare i segnali provenienti dai rivelatori
Ischia, giugno 2006Riunione Annuale GE 2006 Exploiting the Body Effect to Improve Analog CMOS Circuit Performances *P. Monsurrò, **S. Pennisi, *G.
UNIVERSITÀ DEGLI STUDI DI PAVIA FACOLTÀ DI ECONOMIA, GIURISPRUDENZA, INGEGNERIA, LETTERE E FILOSOFIA, SCIENZE POLITICHE. Corso di Laurea Interfacoltà in.
Guardate le seguenti due frasi:
Castelli Enrico Classe 1i
Motor Sizing.
ROBINSON CRUSOE ROBINSON CRUSOE’S ISLAND L’ ISOLA DI
Frequency Domain Processing (part 2) and Filtering C. Andrés Méndez 03/04/2013.
Tutor: Elisa Turrini Mail:
Enzo Anselmo Ferrari By Giovanni Amicucci. Di Enzo Questo è Enzo Anselmo Ferrari. Enzo compleanno è diciotto febbraio Enzo muore è quattordici agosto.
UG40 Energy Saving & Twin Cool units Functioning and Adjustment
EMPOWERMENT OF VULNERABLE PEOPLE An integrated project.
LA WEB RADIO: UN NUOVO MODO DI ESSERE IN ONDA.
Guida alla compilazione del Piano di Studi Curricula Sistemi per l’Automazione Automation Engineering.
Passato Prossimo. What is it?  Passato Prossimo is a past tense and it is equivalent to our:  “ed” as in she studied  Or “has” + “ed” as in she has.
Lezione n°27 Università degli Studi Roma Tre – Dipartimento di Ingegneria Corso di Teoria e Progetto di Ponti – A/A Dott. Ing. Fabrizio Paolacci.
Italian 1 -- Capitolo 2 -- Strutture
Scenario e Prospettive della Planetologia Italiana
William Wordsworth Memory & Inspiration “And as I mounted up the hill
PINK FLOYD DOGS You gotta be crazy, you gotta have a real need. You gotta sleep on your toes. And when you're on the street. You gotta be able to pick.
Accoppiamento scalare
SUMMARY Time domain and frequency domain RIEPILOGO Dominio del tempo e della frequenza RIEPILOGO Dominio del tempo e della frequenza.
SUMMARY Different classes and distortions RIEPILOGO Le diverse classi e le distorsioni RIEPILOGO Le diverse classi e le distorsioni.
Filtri del secondo ordine e diagrammi di Bode
SUMMARY Interconnection of quadripoles RIEPILOGO Interconnessione di quadripoli RIEPILOGO Interconnessione di quadripoli.
Buon giorno, ragazzi oggi è il quattro aprile duemilasedici.
WRITING – EXERCISE TYPES
La Grammatica Italiana Avanti! p
Svolgimento della Sezione 5: CONTROLLORI
The effects of leverage in financial markets Zhu Chenge, An Kenan, Yang Guang, Huang Jiping. Department of Physics, Fudan University, Shanghai, ,
Information In March we decided to start to work on this topic in strong collaboration with Roma 1 group: Ferrante (50-70%), Braccini (50-70%), Torre (100%),
Transcript della presentazione:

Proprietà dinamiche degli strumenti di misura Marco Tarabini Politecnico di Milano Dipartimento di Meccanica, Sezione di Misure e Tecniche sperimentali

Introduction When choosing a transducer, one must take care not only of the static properties of instruments (sensitivity, bias, floor noise and so on) but also of how this instrument describes time varying signals. The dynamic properties of instruments are not expressed by single numbers, while the static properties are. For instance, the sensitivity of a displacement transducer is 100 mV/mm, its full scale value is ±20 mm, its accuracy can be  0.5 % of the full scale and so on. With the term “dynamic properties” we commonly indicate the response of the instrument to input signals gi. The output of the instrument gu will depend on the inputs and on the transfer function of the instrument Gstrum.

What about G? Gstrum can be determined both analytically (with a deep knowledge ofthe physical phenomena governing the instrument behaviour) or experimentally, with the dynamic characterization of the transducer. The dynamic properties are commonly studied with Impulse Step Ramp Sine

In practice? It is also necessary to distinguish between the ideal signal (with which one can study the mathematical model) and the actual signal (that one can apply to a real instrument in order to observe his behaviour). In particular, it is not possible to create the impulse and the step signals, since sudden variation of the input quantity are nearly impossible. In view of this difference, the dynamic experimental characterization of the instrument may differ from the analytical one.

Study of the dynamic response The study of the responses to the impulse, ramp and step inputs is usually performed in time domain, while the study to the sinusoidal response is carried out in frequency domain. One can observe that the ideal step is the derivative of the ideal ramp, and the ideal impulse is the derivative of the step. This means that it is theoretically possible to switch between different inputs with proper differentiations or integrations. Depending on their dynamic behaviour, instruments can be classified on the base of their order, i.e. on the order of the differential equation describing their performances. Instruments are classified in: Zero order instruments; First order instruments; and Second order instruments.

Zero Order Instruments Are also said ideal instruments, and are all those instruments for which the following equation is valid These instruments ideally reproduce each kind of input. These instrument does not exist, but in some cases, for specific input configurations (for instance, in a specific frequency range), their behaviour can be approximated with the zero order one. A typical example is a resistive displacement sensor.

How does it work? The measurement is obtained with the reading of the 1-3 voltage. V1-3 is proportional to the resistance R1-3, and consequently: The voltage 1-3 depends only on the position of the transducer and consequently the displacement is proportional to V1-3. The static sensitivity of the instrument is therefore defined as The resistive behaviour of the transducer is an approximation of the actual one. At high frequency also the cable capacitance and the resistance inductance cannot be neglected and, consequently, the zero order approximation is no more valid.

First order Instruments First order instruments are governed by a differential equation similar to the following one: An example of these instruments is the thermometer. Let us consider a RTD (resistance thermal device), that is initially at a temperature term,iniz and afterwards placed in a fluid whose temperature is fluido. The RTD will change its temperature and reach the fluid one. The transitory temperature can be explained using the thermal exchange equation. Neglecting the radiating and conductive terms, one can write: Where c is the specific heat of the thermometer, m its mass, A its surface and h is the thermal exchange coefficient.

Thermal Sensors With simple computations Said  One can write  is said time constant of the thermometer

Step Response If the temperature input is a step, it is possible to impose the exponential solution By introducing the initial and final conditions, we obtain: Where The instrument behaviour depends on : if  increases, a larger time is needed to reach the final temperature value. The time constant meaning can be studied by setting t=:

Dynamic Calibration How can we experimentally identify the time constant tau?  is the time for which the measurand is has still to cover the 36.8% of In other words, the 63,2% of imposed by the step is achieved after a time equal to  It seems quite easy, we take the thermometer from a water + ice bath and we put it into boiling water. The time requested to reach 63.2° is tau Method based on one single point

Second way... Another physical meaning of the time constants given by the derivative at time t=0 The curve tangent at t=0 s is inversely proportional to the time constant and proportional to the temperature step. Consequently we can derive tau starting from the derivative at time equal to zero by knowing the temperature difference. Method based on several points (tangent at zero)

Third way Logarithmic regression: we know that the response is exponential We know that the solution is And consequently, we can compute the logarithm of the above expression obtaining And now? After changing the variable, go to excel and use the regr.lin command

Misure meccaniche e termiche Misure di temperatura e determinazione sperimentale della prontezza di uno strumento del primo ordine Marco Tarabini marco.tarabini@polimi.it

Scopo del laboratorio Scopo dell’esercitazione è la determinazione sperimentale della prontezza di uno strumento del primo ordine: Perché? Perché nella misura di quantità variabili nel tempo insorgono una serie di problemi legati alle caratteristiche degli strumenti. E’ necessario indagare se un determinato strumento è valido per misure dinamiche  prontezza. Prima di determinare la prontezza dello strumento, impariamo ad eseguire una misura di temperatura con una termocoppia.

Esperienza di laboratorio – prima parte Misurare con la termoresistenza la temperatura ambiente, ed assumerla pari a quella di riferimento, ovvero dei morsetti del multimetro (si ricorda che misura = numero+udm+incertezza!); riscaldare una resistenza riscaldante alimentandola con una tensione costante, e lasciare andare a regime (5-10 min); misurare con la termocoppia la temperatura della resistenza riscaldante (si ricorda che misura = numero+udm+incertezza!);

Esperienza di laboratorio – prima parte Calcolo dell’incertezza: Termocoppia: consultare la tabella dei potenziali termoelettrici e considerare l'indicazione "limits of error" come accuratezza; dei due numeri indicati, considerare il maggiore. La termocoppia del laboratorio è di classe "standard". Termoresistenza: la termoresistenza del laboratorio è di classe B (nel range ‑50 °C/+500 °C). Si riportano di seguito le tabelle per il calcolo delle accuratezze. Calcolare l'incertezza a partire dall'accuratezza, con i = a /

Modello di uno strumento del primo ordine Nota importante sulle unità di misura: Tin per misure di temperatura è espressa in [°C] Vout, grandezza in uscita dallo strumento può essere in [V] per una termocoppia o in [Ω] per una termoresistenza. Nel laboratorio in oggetto, la centralina di acquisizione dei dati NON provvede anche a fare la conversione in [°C] della misura in uscita dello strumento. Pertanto la sensibilità statica k andrà ricavata dalla tabella della termocoppia utilizzata.

Seconda Parte Identificazione della costante di tempo mediante i tre metodi proposti Intercetta con il livello 63.2% Tangente all’origine Regr Ressione Logaritmica Verifica dei dati per transitorio in salita e in discesa