LE PROIEZIONI ASSONOMETRICHE

Slides:



Advertisements
Presentazioni simili
Campi elettromagnetici
Advertisements

Campi elettromagnetici
I COSTI DI PRODUZIONE Remunerazione dei fattori produttivi
Corso Power Point esercitazione...
I.p.s.i.a. "O. Ricci" Fermo Corso Power Point Esercitazione.
Assonometria.
Introduzione al Disegno Tecnico
Unificazione nel disegno: Metodi di rappresentazione
05 corso tecniche di rappresentazione dello spazio A.A. 2009/2010 docente Arch. Emilio Di Gristina.
Cap. 7 Assonometria Indicazioni generali DNT - Cap. 7 a.a. 2009/10.
Cap. 3 Proiezioni ortografiche
Che cos’è un’assonometria ?
PROIEZIONI ASSONOMETRICHE
Superfici di base e altezze
LE PROIEZIONI ASSONOMETRICHE
LE PROIEZIONI ORTOGONALI
LE PROIEZIONI ORTOGONALI
COSTRUZIONI GEOMETRICHE ELEMENTARI 4
COSTRUZIONI GEOMETRICHE ELEMENTARI 5
LE PROIEZIONI ORTOGONALI
FIGURE GEOMETRICHE INSCRITTE NELLA CIRCONFERENZA 2
LE PROIEZIONI ASSONOMETRICHE
LE PROIEZIONI ORTOGONALI
LE PROIEZIONI ASSONOMETRICHE
Le scale di proporzione
Le Proiezioni Ortogonali
IL PIANO CARTESIANO Prof.ssa A. Sia.
PROF. ARCH. CHERUBINO GAMBARDELLA
L’assonometria obliqua
Sistemi di riferimento
Trasformazioni geometriche
Proiezioni ortogonali
L’assonometria obliqua
Metodi di rappresentazione in proiezione parallela
F. Gay, Università IUAV di Venezia, Corso di Laurea in Scienze dellArchitettura - Modulo coordinato di rappresentazione 1 – aa Assonometrie.
Assonometrie ortogonali
Metodi di rappresentazione in proiezione parallela
Misura della densità di
Velocità angolare di precessione (vedi Lez6)
L’area del rombo.
Le proiezioni e la prospettiva
LE PROIEZIONI ASSONOMETRICHE
LE PROIEZIONI ASSONOMETRICHE
LE PROIEZIONI ORTOGONALI
TECNOLOGIA: LE PROIEZIONI ASSONOMETRICHE
Assonometria isometrica di un parallelepipedo
ASSONOMETRIA CAVALIERA.
Madama Chiara - Regole di Quotatura con esempi
LABORATORIO DI DISEGNO – CORSO A
Le isometrie.
PROIEZIONI ORTOGONALI
LE PROIEZIONI ORTOGONALI
assonometria isometrica triedro di riferimento
ASSONOMETRIA.
Giuseppe Maggi 3°C PRESENTAZIONE ESAME TECNOLOGIA.
INTRODUZIONE ALLA GEOMETRIA
t = 0 start stop soso SPAZIO PERCORSO TEMPO IMPIEGATO PER PERCORRERLO.
Trasformazioni geometriche
Cifre significative I numeri possono essere: esatti, conteggi, definizioni Ottenuti da misure : Misurare una distanza Ogni misura sperimentale ha un errore.
Liceo Scientifico Trebisacce CS
L'assonometria (dal greco áxon = asse e métron= misura, cioè misura in base agli assi) è un metodo di rappresentazione grafica  Assonometrie.
Il corpo, lo spazio e il movimento
LE PROIEZIONI ASSONOMETRICHE
I. C. “PIETRO GIANNONE SCUOLA SECONDARIA DI 1°GRADO A.S. 2016/2017
ASSONOMETRIA MONOMETRICA
ASSONOMETRIA CAVALIERA
ASSONOMETRIA CAVALIERA
ASSONOMETRIA ISOMETRICA
ASSONOMETRIA MONOMETRICA
Piramide a base esagonale
Transcript della presentazione:

LE PROIEZIONI ASSONOMETRICHE Parallelepipedo LE PROIEZIONI ASSONOMETRICHE

ASSONOMETRIA ISOMETRICA

Assi assonometria isometrica 1cm Assonometria isometrica di un parallelepipedo Lunghezza OA = 5 cm; Larghezza OB = 3 cm; Altezza OC = 12 cm z C x y Apertura a piacere assi A 1 B 3 2 1cm O

Base inferiore z C x D y A B O Base inferiore

altezze z x y Lunghezza OA = 5 cm; Larghezza OB = 3 cm; Assonometria isometrica di un parallelepipedo Lunghezza OA = 5 cm; Larghezza OB = 3 cm; Altezza OC = 12 cm z C x D y Altezze A B O

Base superiore z x y Lunghezza OA = 5 cm; G Larghezza OB = 3 cm; Assonometria isometrica di un parallelepipedo G Lunghezza OA = 5 cm; Larghezza OB = 3 cm; Altezza OC = 12 cm z F E C x D y Base superiore A B O

linee z x y Lunghezza OA = 5 cm; G Larghezza OB = 3 cm; Assonometria isometrica di un parallelepipedo G Lunghezza OA = 5 cm; Larghezza OB = 3 cm; Altezza OC = 12 cm z F E C x D y linee A B O

ASSONOMETRIA MONOMETRICA

Assi assonometria monometrica 1cm Assonometria monometrica di un parallelepipedo Lunghezza OA = 5 cm; Larghezza OB = 3 cm; Altezza OC = 10 cm z x C y Apertura a piacere A 1 4 B 3 1cm 2 O

Base inferiore z x C D y A B O Base inferiore

altezze z x y Lunghezza OA = 5 cm; Larghezza OB = 3 cm; Assonometria monometrica di un parallelepipedo Lunghezza OA = 5 cm; Larghezza OB = 3 cm; Altezza OC = 10 cm z x C D y A Altezze B O

Base superiore z x y G Lunghezza OA = 5 cm; Larghezza OB = 3 cm; Assonometria monometrica di un parallelepipedo G Lunghezza OA = 5 cm; Larghezza OB = 3 cm; Altezza OC = 10 cm z F E x C C D y A Base superiore B O

LINEE z x y G Lunghezza OA = 5 cm; Larghezza OB = 3 cm; Assonometria monometrica di un parallelepipedo G Lunghezza OA = 5 cm; Larghezza OB = 3 cm; Altezza OC = 10 cm z F E x C C D y A Base superiore B O

ASSONOMETRIA CAVALIERA

Assi assonometria cavaliera 1cm Assonometria cavaliera di un parallelepipedo Lunghezza OA = 5 cm; Larghezza = 3 cm; Altezza OC = 12 cm z LE MISURE DELLA LARGHEZZA (SULL’ASSE y) SI RIPORTANO RIDOTTE DELLA META’; dunque il punto B si trova a 1,5 cm dall’origine O C y Apertura a piacere 1 B 1cm x A O 2

z Base inferiore C y D B x A O

altezze z y x Lunghezza OA = 5 cm; Larghezza = 3 cm; Assonometria cavaliera di un parallelepipedo Lunghezza OA = 5 cm; Larghezza = 3 cm; Altezza OC = 12 cm z C y D B x A O

Base superiore z y x Lunghezza OA = 5 cm; Larghezza = 3 cm; Assonometria cavaliera di un parallelepipedo Lunghezza OA = 5 cm; Larghezza = 3 cm; Altezza OC = 12 cm z G E F C y D B x A O

Linee z y x Lunghezza OA = 5 cm; Larghezza = 3 cm; Altezza OC = 12 cm Assonometria cavaliera di un parallelepipedo Lunghezza OA = 5 cm; Larghezza = 3 cm; Altezza OC = 12 cm z G E F C y D B x A O