Metodi di Monte Carlo a cura di Michele Miccio rev. 2.1 del 13 giugno 2008.

Slides:



Advertisements
Presentazioni simili
Stefania Quintavalla - SSICA
Advertisements

DISTRIBUZIONE BINOMIALE (cenni) DISTRIBUZIONE NORMALE
Laboratorio Processi Stocastici
ARPAT Firenze1 Osservazioni relative allincertezza nella stima delle emissioni da traffico stradale X EXPERT PANEL EMISSIONI DA TRAFFICO STRADALE Stazione.
OPTICS BY THE NUMBERS LOttica Attraverso i Numeri Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama,
Numeri casuali Cos’e’ un numero casuale? 3 e’ un numero casuale?
Matematica I: Calcolo differenziale, Algebra lineare, Probabilità e statistica Giovanni Naldi, Lorenzo Pareschi, Giacomo Aletti Copyright © The.
Laboratorio Processi Stocastici
1 2. Introduzione alla probabilità Definizioni preliminari: Prova: è un esperimento il cui esito è aleatorio Spazio degli eventi elementari : è linsieme.
Sicurezza II Prof. Dario Catalano Errori di Implementazione.
Definizioni Chiamiamo esperimento aleatorio ogni fenomeno del mondo reale alle cui manifestazioni può essere associata una situazione di incertezza. Esempi:
Chiara Mocenni - Sistemi di Supporto alle Decisioni I – aa Sistemi di Supporto alle Decisioni I Dynamic Programming Chiara Mocenni Corso di.
Chiara Mocenni - Sistemi di Supporto alle Decisioni I – aa Sistemi di Supporto alle Decisioni I Scelte di consumo Chiara Mocenni Corso di laurea.
Metodi Probabilistici, Statistici e Processi Stocastici Università Carlo Cattaneo Emanuele Borgonovo Metodi Probailistici, Statistici e Processi Stocastici.
L 16 Progetto delle alternative Andrea Castelletti Modellistica e Controllo dei Sistemi Ambientali.
Dip. Economia Politica e Statistica
laboratorio epistemologia Marcello Sala
Processi Aleatori : Introduzione – Parte I
Distribuzioni di probabilità
Matematica e statistica Versione didascalica: parte 8 Sito web del corso Docente: Prof. Sergio Invernizzi, Università di Trieste
Apprendimento di movimenti della testa tramite Hidden Markov Model
a cura di: Nicola Cominetti
STATISTICA a.a DISTRIBUZIONE BINOMIALE (cenni)
L’indagine OCSE-PISA: il framework e i risultati per la matematica
Access: Query semplici
Valutazione della stima: gli intervalli di confidenza
Cenni di teoria degli errori
Fogli elettronici - Spreadsheet
Queuing or Waiting Line Models
Esperimentazioni di fisica 3 AA 2010 – 2011 M. De Vincenzi
OpenGL Particle System
Sequenze Ripetitive di Dna
Elementi di Informatica
Histogram and region based processing
Analisi della varianza
Il Campionamento nel 2013.
Cai Lin Lin Michela & Guidetti Emanuela presentano:
L'insostenibile leggerezza dei Sistemi Complessi
Le distribuzioni campionarie
Statistica Che cos’è?.
Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,
Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,
delle procedure sperimentali
Statistica La statistica è
Introduzione al metodo Monte Carlo
“Alternative methods in animal experimentation: evaluating scientific, ethical and social issues in the 3Rs context” Consiglio Nazionale delle Ricerche,
Grandezze e Misure
LUCIDI dell'insegnamento di COMUNICAZIONI ELETTRICHE eo/in/bi
Didattica e Fondamenti degli Algoritmi e della Calcolabilità Terza giornata: principali classi di complessità computazionale dei problemi Guido Proietti.
R. Soncini Sessa, MODSS, L 26 Stima degli effetti Calcolo degli obiettivi (Laplace) Rodolfo Soncini Sessa MODSS Copyright 2004 © Rodolfo Soncini.
Un problema multi impianto Un’azienda dispone di due fabbriche A e B. Ciascuna fabbrica produce due prodotti: standard e deluxe Ogni fabbrica, A e B, gestisce.
Intervallo di Confidenza Prof. Ing. Carla Raffaelli A.A:
Laboratorio di Processi Stocastici Alberto Sorrentino
SUMMARY Quadripoles and equivalent circuits RIEPILOGO Quadripoli e circuiti equivalenti RIEPILOGO Quadripoli e circuiti equivalenti.
I Parte LA PRODUZIONE STATISTICA DEI DATI  Introduzione  La pianificazione  Il disegno dell’indagine  Le tecniche d’indagine  Le fasi operative 
SUMMARY A/D converters RIEPILOGO Convertitori A/D RIEPILOGO Convertitori A/D.
STATISTICHE DESCRITTIVE
TRATTAMENTO STATISTICO DEI DATI ANALITICI
M. De Cecco - Lucidi del corso di Robotica e Sensor Fusion Se i parametri di Denavit-Hartemberg non corrispondono con quelli di progetto a causa di tolleranze.
Operazioni di campionamento CAMPIONAMENTO Tutte le operazioni effettuate per ottenere informazioni sul sito /area da monitorare (a parte quelle di analisi)
Psicometria modulo 1 Scienze tecniche e psicologiche Prof. Carlo Fantoni Dipartimento di Scienze della Vita Università di Trieste Rosoluzione.
Psicometria modulo 1 Scienze tecniche e psicologiche Prof. Carlo Fantoni Dipartimento di Scienze della Vita Università di Trieste Campionamento.
La funzione CASUALE. Gli istogrammi.
1 VARIABILI CASUALI. 2 definizione Una variabile casuale è una variabile che assume determinati valori in modo casuale (non deterministico). Esempi l’esito.
Statistica con Excel Corso di Fisica ed Elementi di Laboratorio ed Informatica CdL Scienze Biologiche AA 2015/2016.
Scienze tecniche e psicologiche
Psicometria modulo 1 Scienze tecniche e psicologiche Prof. Carlo Fantoni Dipartimento di Scienze della Vita Università di Trieste Implementazione.
SUMMARY Checking RIEPILOGO Verifiche RIEPILOGO Verifiche.
ROMA 23 GIUGNO 2016 AREA TEMATICA 1. PROSPETTIVE DEI SISTEMI STATISTICI Validation: un approccio metodologico comune per la validazione dei dati e l’automazione.
Valutazioni applicate alle decisioni di investimento Arch. Francesca Torrieri Analisi di sensitività e analisi del rischio.
Transcript della presentazione:

Metodi di Monte Carlo a cura di Michele Miccio rev. 2.1 del 13 giugno 2008

Fu Enrico Fermi, a detta di Emilio Segré, ad inventare il metodo Monte Carlo (senza usare questo nome), quando studiava a Roma il moto dei neutroni all'inizio degli anni 30. Stanislaw Ulam usò il metodo Monte Carlo nel '46. Un modello di simulazione Monte Carlo può essere visto come un apparato sperimentale: una singola simulazione con il metodo Monte Carlo corrisponde ad un esperimento loutput della simulazione corrisponde ad una singola osservazione sperimentale Un problema deterministico può essere risolto con un metodo Monte Carlo se il problema formalmente può essere espresso come un problema stocastico. Introduzione

Sono tanti ormai i campi in cui si utilizzano metodi statistici per ottenere informazioni e stime su fenomeni legati al caso. Non occorre che i dati siano raccolti durante un esperimento reale in cui tali fenomeni avvengono. Ciò potrebbe richiedere troppo tempo e, in ogni caso, non sempre la natura è disposta a fornirci situazioni aleatorie... a comando. I dati possono allora provenire da simulazioni fatte per mezzo di un computer, in grado di generare sequenze di numeri casuali. Esse sono quindi utilizzate per simulare per migliaia di volte il fenomeno aleatorio, raccogliendo così rapidamente una serie di dati che, trattati con metodi statistici, forniscono stime che diventano tanto più attendibili quanto più è grande il numero delle prove fatte. … da Cerasoli e De Petris (1994) Introduzione./.

FIELDS OF APPLICATION Telecommunications networks Financial markets Revenue Management Insurance Weather forecasting Engineering Statistics … from Monte Carlo Simulation IEOR E4703 Fall, by Martin Haugh (2004) Introduzione./.

Monte Carlo Simulation Basics mc/MonteCarloSimulation.html

Random number (numero casuale): A mathematically selected value which is generated by a formula or selected from a table to conform to a probability distribution. Generatore di numeri casuali ( random number generator ): Un metodo implementato in un programma su computer che è capace di generare una successione di numeri casuali, indipendenti tra di loro Seme ( Seed Number ): Il primo numero in una sequenza di numeri casuali. Uno stesso seme produce sempre la stessa sequenza di numeri casuali Simulatore Monte Carlo: Un sistema che utilizza opportunamente numeri casuali per misurare gli effetti dellincertezza su un modello matematico deterministico Monte Carlo methods: They are a widely used class of computational algorithms for simulating the behavior of various physical and mathematical systems, and for other computations. They are distinguished from other simulation methods by being stochastic, that is nondeterministic in some manner – usually by using random numbers – as opposed to deterministic algorithms. retrieved from Wikipedia, the free encyclopedia Forecast A statistical summary of the mathematical combination of the assumptions in a model, output graphically or numerically. Forecasts are frequency distributions of possible results for the model. Glossario

ELEMENTI ESSENZIALI per lo SVILUPPO di un METODO di MONTECARLO 1.DATI STATISTICI PREGRESSI O CONOSCENZE STATISTICHE SUGLI ASPETTI AFFETTI DA INCERTEZZA DEL PROCESSO /CASO/ FENOMENO OGGETTO DI SIMULAZIONE 2.GENERATORE DI N. CASUALI 3.MODELLO MAT. DEL PROCESSO /CASO/ FENOMENO OGGETTO DI SIMULAZIONE 4.PREDIZIONE ATTRAVERSO IL MODELLO MATEMATICO DEL RISULTATO DELLA SIMULAZIONE almeno 1 variabile aleatoria di uscita 5.TECNICHE E STRUMENTI PER LA RAPPRESENTAZIONE (TABELLARE, TESTUALE, GRAFICA) E LA VALUTAZIONE STATISTICA DEL RISULTATO 6.TECNICHE E STRUMENTI PER LA RIDUZIONE DELLA VARIANZA DEL RISULTATO

Metodi di Monte Carlo ESEMPIO 1 (Haugh, 2004) Il magazzino di uno stabilimento petrolchimico mantiene, per le necessità dei vari impianti di processo delle acque, uno stoccaggio di fusti di additivo antischiuma deperibile. Il magazziniere emette un ordine per N nuovi fusti allinizio di ogni nuova settimana. Ogni fusto utilizzato per il trattamento delle acque nella settimana consente un risparmio di gestione di 60. Ogni fusto non utilizzato comporta un costo di smaltimento a fine settimana di 40. La domanda settimanale, D, di fusti di additivo dagli impianti è uniformemente distribuita nellintervallo [80, 140]. Quanti nuovi fusti per settimana dovrebbe il magazziniere ordinare per massimizzare il risparmio ? … adapted from Monte Carlo Simulation, IEOR E4703 Fall by Martin Haugh (2004)

Metodi di Monte Carlo ESEMPIO 1 (Haugh, 2004) I.Usa un modello o sviluppa un nuovo modello per il risparmio P II.Fissa un valore per N (ordine nuovi fusti allinizio di settimana) Estrai n numeri per D (domanda settimanale, D, di fusti di additivo dagli impianti) Calcola il risparmio P III.Calcola la media del risparmio su n estrazioni IV.Determina un nuovo valore per N Ripeti la sequenza … V.Scegli il valore di N la cui simulazione MonteCarlo ha fornito il risparmio medio più alto PROCEDURE (…from VERTEX 42) Step 1: Create a parametric model, y = f(x 1, x 2,..., x q ). Step 2: Generate a set of random inputs, x i1,..., x iq. Step 3: Evaluate the model and store the results as y i. Step 4: Repeat steps 2 and 3 for i = 1 to n. Step 5: Analyze the results using histograms, summary statistics, confidence intervals, etc.

Cristal Ball® software

Cristal Ball® software Cosa si intende per "Simulazione?" Quando usiamo la parola simulazione, intendiamo a qualsiasi metodo analitico in grado di imitare un sistema reale, specialmente quando altre analisi sono troppo matematicamente complesse o difficili da riprodurre. Senza l'aiuto di una simulazione un modello spreadsheet potrà rivelare solamente un risultato singolo, tipicamente il valore medio dello scenario. Un tipo di simulazione spreadsheet è la Monte Carlo simulation, che genera valori casuali per le variabili incerte in un modello. Cosa fare delle variabili incerte in uno spreadsheet? Per ogni variabile incerta (che può assumere diversi intervalli di valori possibili), si definiscono i possibili valori con una distribuzione probability distribution. Il tipo di distribuzione selezionata è basata sulle condizioni note per la variabile. I tipi di distribuzione includono: Cosa succede durante una simulazione? Una simulazione calcola uno scenario multiplo di un modello ripetendo in modo ciclico il calcolo con nuovi valori di campionamento ricavati dalla curva di distribuzione. Durante un ciclo singolo, Crystal Ball seleziona in modo casuale un valore dalle possibilità definite (l'intervallo e la forma della distribuzione) per ogni variabile incerta e quindi ricalcola l'intero foglio dati (spreadsheet). e.

Monte Carlo Simulation in Matlab® MATLAB Function Reference rand Description The rand function generates scalar or arrays of random numbers whose elements are uniformly distributed in the interval (0,1). rand Generates a random scalar number in the interval (0,1) from a (pseudo)-uniform distribution rand('state',0) Resets the generator to its initial state rand('state',s) Resets the state to its another specified state s