Vita da stelle A.Greco 2005
La Via Lattea
Stelle doppie
LO SPOSTAMENTO VERSO IL ROSSO Già nel 1912 Slipher aveva osservato che le righe degli spettri di emissione della maggior parte delle galassie presentavano un caratteristico spostamento verso lunghezze donda maggiori (spostamento verso il rosso o redshift). Questo fenomeno,che viene interpretato sulla base dell effetto Doppler, mostrava che la maggior parte delle galassie si sta lentamente allontanando dalla nostra. effetto Doppler
Effetto Doppler Effetto Doppler In fisica, variazione apparente della lunghezza donda, o della frequenza, di unonda sonora o luminosa quando la sorgente emittente si allontana o si avvicina allosservatore. Leffetto, che prende il nome dal fisico austriaco Christian Johann Doppler, è dovuto al fatto che le onde percepite dallosservatore si susseguono con frequenza maggiore se la sorgente è in avvicinamento e con frequenza minore nel caso contrario. Così, se una sorgente che emette un suono di altezza costante si muove verso losservatore, questi percepisce un suono più acuto, mentre se essa si allontana egli percepisce un suono più grave. Il fenomeno si osserva, ad esempio, quando si ode il fischio di un treno dalla banchina di una stazione oppure da un altro treno. Analogamente, le linee dello spettro di un corpo luminoso, come una stella, risultano spostate verso il violetto, se esso si sta avvicinando alla Terra, e verso il rosso se si sta allontanando; misurando questo spostamento è possibile calcolare il moto relativo della stella rispetto al nostro pianeta ( Red Shift). Lanalisi degli spettri della radiazione proveniente da corpi celesti portò a risultati estremamente importanti in astrofisica, quali ad esempio la scoperta di stelle doppie non distinguibili neanche mediante strumenti ad alta risoluzione. Leffetto Doppler costituisce inoltre la base della teoria dellespansione delluniverso.
La radiazione stellare
Una piccola stella gialla...
I colori del Sole
LO SPETTRO SOLARE Nello spettro continuo, dovuto a emissioni da parte di solidi incandescenti e di liquidi o gas molto densi, non sono distinguibili le righe relative a ciascuna lunghezza d'onda; ne risulta un'immagine simile all'arcobaleno. Nel caso che il corpo sia un emettitore ideale, ossia un corpo nero, la distribuzione dell'intensità nelle varie lunghezze d'onda dipende solo dalla sua temperatura. La legge di Stefan-Boltzmann afferma che l'energia totale irradiata nell'unità di tempo da un corpo nero è proporzionale alla quarta potenza della temperatura assoluta. Nello spettro emesso dai vapori caldi di una data sostanza può prevalere un singolo colore risultante. Lo spettro in questi casi consiste di diverse righe, ciascuna relativa a una diversa lunghezza d'onda, separate l'una dall'altra da regioni di completa oscurità.
Passaggio di Venere A. Greco2004
NASCE UNA STELLA Una stella nasce da una nube di gas e polveri relativamente fredda, con densità migliaia di volte maggiore di quella della circostante materia interstellare. La contrazione di questo gas, e il suo conseguente riscaldamento, continua finché esso si trasforma in una protostella che emette radiazioni elettromagnetiche nella banda dell'infrarosso. La temperatura interna cresce ulteriormente fino a raggiungere un valore di circa °C, sufficiente perché si inneschino le reazioni nucleari che trasformano l'idrogeno e il deuterio (il cosiddetto idrogeno pesante) in elio, con conseguente emissione di una grande quantità di energia nucleare. In questo stadio la contrazione si arresta e la stella vive una fase di stabilità.
IL SOLE Le reazioni di fusione dell'idrogeno in elio del Sole hanno luogo nel nucleo, dove la densità dei gas è circa 150 volte superiore a quella dell'acqua e la temperatura arriva a 14 milioni °C. Il calore sviluppato nel nucleo si propaga per irraggiamento nello strato radiativo, la cui densità è circa uguale a quella dell'acqua e la temperatura è di 2,5 milioni °C. Nello strato convettivo la propagazione del calore avviene grazie al rimescolamento dei gas che qui hanno una densità pari a un decimo di quella dell'acqua e una temperatura di 2 milioni °C. Le turbolenze dello strato convettivo emergono sulla fotosfera conferendole un aspetto maculato e brulicante. Qui la temperatura scende a circa 5700 °C e la densità a un milionesimo di quella dell'acqua.
LE MACCHIE SOLARI La superficie della fotosfera appare costellata di aree scure variabili per forma e per numero, nelle quali si distingue una zona centrale (ombra), circondata da una regione di bordo leggermente più luminosa (penombra). Queste strutture prendono il nome di macchie solari e rappresentano dei "punti freddi" della fotosfera. Nel 1908 l'astronomo George Ellery Hale scoprì che le macchie solari sono sede di intensi campi magnetici. Le macchie solari compaiono generalmente a coppie, con campi magnetici di polarità opposta. Dapprima aumentano di numero, per poi diminuire, con un ciclo regolare che dura circa 11 anni, già noto almeno dall'inizio del XVIII secolo.
La memoria degli alberi
Le protuberanze
BRILLAMENTI
LA CORONA
IL VENTO SOLARE
LE AURORE BOREALI
Immagini: The Hubble Heritage project Unione Astrofili Italiani GAT Tradate Royal Observatory Anglo Australian Observatory ESO Animazioni: NASA Colonna sonora: The memory of trees - ENYA