Paradossi geometrici.

Slides:



Advertisements
Presentazioni simili
ILLUSIONI OTTICHE SCIENZE III Ducati Carloni Valentina.
Advertisements

Come costruire un tangram
Osservatorio Astronomico Lic. Classico A. D. Azuni Sassari
Facciamo Luce Il Cuneo D'Aria.
Le rette.
OTTICA delle LENTI Presentazione multimediale classe IV IB A.S. 2002/03 Prof. Loredana Villa Per molti strumenti ottici (il cannocchiale, il binocolo,
Illusioni ottiche.
Daniela, Eleonora e Andrea
La Percezione visiva.
I Poligoni.
Definizione di combinazione
Cap. 11 I Quadrilateri.
Prove di verifica dei preapprendimenti
Percezione perché dovremmo chiederci come avviene la percezione?
I QUADRILATERI “Per geometria non intendo lo studio artificioso di
GEOMETRIA IPERBOLICA.
Ricostruire il Tangram?
il tutto è più della somma delle singole parti
Esempi di percezione ottica e illusioni
I VETTORI di Federico Barbarossa
Scalari e vettori In fisica si lavora con due tipi di grandezze: le grandezze scalari e le grandezze vettoriali. Le grandezze scalari sono quelle grandezze.
Elementi di Matematica
Esperienza di laboratorio sull’elasticità
Perché dimostrare ciò che è evidente? Progetto lauree scientifiche Primo laboratorio a.s Paola Gario Flavia Giannoli.
De Faveri Martina Elementi di grafica digitale
Illusioni ottiche geometriche
DISTANZA E PROFONDITA’
Le macchine Matematiche
Poligoni inscritti e circoscritti
Alla scoperta di una regolarità…
L’ellisse come luogo di punti
IL PUNTO
La percezione dello spazio
Il Piano Cartesiano .
Piccole lezioni di geometria
PIANO CARTESIANO.
Fissa gli occhi sul punto nero.
LEGGE DELLA VICINANZA Nella figura le rette non vengono percepite singolarmente ma in serie di due. Si vedono quindi tre colonne strette e non due larghe.
Un modello per interpretare, interagire e descrivere la realtà
Liceo Scientifico G. Ferrari
Che cos’è una retta? CODOGNI GIULIO IVD A.S
Percezione visiva illusione e realtà
CIO’ CHE NON AVETE MAI VISTO …
Costruire una tabella pivot che riepiloghi il totale del fatturato di ogni agente per categorie di vendita, mese per mese. Per inserire una tabella pivot.
I POLIGONI.
GLI ENTI GEOMETRICI FONDAMENTALI A Prima C home production
GEOMETRIA.
Circonferenza e cerchio
L’equazione della retta
Come costruire un tangram
LA PERCEZIONE VISIVA QUANDO GUARDIAMO UN OGGETTO ENTRANO IN GIOCO:
Effetti ottici....
I L T R I A N G O L O I S O S C E L E 36°
Fissa gli occhi sul punto nero.
T07 Materiali didattici strutturati
La traslazione.
I Poligoni.
Come risolvere il cubo di RUBIK
Trasformazioni geometriche
Le immagini (e non solo) sono state da:
I Poligoni.
Da: Sergio Dellavecchia, Disegno a mano libera e linguaggio visivo, Sei, 2005, p. 23.
APPUNTI DI GEOMETRIA ANALITICA DELLA RETTA
IL PIANO CARTESIANO E LA RETTA
Prof.ssa Livia Brancaccio 2015/16
QUANDO I SENSI CI INGANNANO
Luoghi di punti In geometria il termine
SCUOLA MEDIA STATALE “C.COLOMBO”. Percezione di lunghezze Percezione di forme Percezione di colori Completamento di immagini Movimento mimetismo Uccelli.
IL CERCHIO E LA CIRCONFERENZA.
Transcript della presentazione:

Paradossi geometrici

Anche nelle figure qui sopra l'illusione prende vita dall'accostamento a rette oblique. E nell'immagine inferiore notiamo che anche dei cerchi subiscono lo stesso tipo di 'trattamento'. In ognuno dei casi quindi la figura posizionata vicino al punto di contatto delle due rette laterali viene vista come se fosse più grande dell'altra anche se così non è! Per comprendere ancora meglio questa illusione date un'occhiata alla sezione successiva sul punto di fuga.

Il punto di fuga Il tipo di illusione ottica di cui abbiamo parlato nella sezione precedente l'illusione del binario viene maggiormente compreso quando ricreiamo effettivamente un ambiente tridimensionale mediante varie rette che sembrano congiungersi in un punto che nella rappresentazione prospettica viene definito 'punto di fuga'. In queste immagini effettivamente le figure che nella rappresentazione tridimensionale dovrebbero stare più distanti da noi sembrano più grandi!

Nell'immagine inferiore poi proviamo a sostituire i segmenti con dei mostriciattoli...

Se consideriamo l'uomo senza cappello nello sfondo e quello col cappello in primo piano non notiamo alcunchè di strano. Ma se proviamo a spostare la figura del primo uomo accanto all'altra percepiamo che c'è qualcosa che non va! Eppure è la stessa figura che è stata semplicemente spostata! In pratica con questa operazione abbiamo spostato nella percezione prospettica il piano sul quale dovrebbe stare l'uomo posto nello sfondo. Posto nel giusto piano le sue piccole dimensioni vengono 'giustificate' da quella che dovrebbe essere la sua distanza dal punto di osservazione. Ma se viene posto su un altro piano questa giustificazione non viene elaborata e l'immagine ci appare 'sbagliata'!

Le corde Creare dei disegni utilizzando delle linee che sembrano delle corde intrecciate può dare luogo a delle distorsioni della linearità o della continuità degli oggetti raffigurati. Questa illusione viene chiamata "della corda ritorta" o "dei cerchi di Frazier".                                            

L'illusione del binario Quando si accostano dei segmenti paralleli a delle linee oblique si può assistere alla nota illusione del binario chiamata anche l'illusione "dei segmenti di Ponzo" dal nome dello scopritore di questo fenomeno. Nella figura qui sopra per esempio il segmento inferiore sembra più corto di quello che sta sopra mentre invece sono perfettamente uguali. Ciò avviene perchè i nostri occhi interpretano la figura prospetticamente a causa delle due rette oblique laterali che simulano il cosiddetto "punto di fuga". Quindi i due segmenti vengono visti come se stessero su due piani differenti: quello in basso vicino a noi e l'altro più lontano. Essendo poi in realtà di uguale lunghezza il cervello crede erroneamente che quello più "lontano" deve essere per forza più grande e così si genera l'illusione. Una legge della percezione infatti, la legge di Emmert, postula:"La dimensione percepita di un particolare angolo visivo è direttamente proporzionale alla sua distanza percepita", o in parole povere:"Più un oggetto ci sembra lontano, più ci sembra grande!"

L'accostamento tra le curve bicolori e lo sfondo inganna la percezione della continuità dei singoli cerchi e ci costringe a vedere delle linee curve che vanno dalla periferia al centro a mo' di spirale. Guardate anche questa strana scritta...

Vi posso assicurare che le lettere non sono spezzate ma l'illusione trae origine dallo stesso fenomeno che abbiamo prima spiegato. E che dire dell'animazione in basso?

L'illusione delle distanze Quale dei due parallelogrammi accostati ha la diagonale più lunga? Quando calcoliamo ad occhio la lunghezza di un segmento magari per raffrontarlo con un altro dobbiamo porre attenzione al contesto dove si trova perchè potremmo incappare in errori di valutazione o più esattamente nell'illusione di Müller-Lyer:

                                                                                                                              Confrontate la freccia rossa e la blu... Qual'è la più lunga? Qui i due segmenti verticali sono uguali?

Tra il segmento verticale e quello orizzontale qual è il più lungo? Confrontate ancora le due frecce Tra il segmento verticale e quello orizzontale qual è il più lungo?

I segmenti obliqui L'accostamento di linee oblique con altre linee o con figure geometriche può dare origine anche ad altri tipi di paradossi ottici.

"Le parallele di Hering e Wundt" invece accostate ad un fascio di rette convergenti sembrano essere incurvate in direzione opposta al punto di convergenza delle rette che stanno dietro!

Nell'illusione "della retta di Poggendorf" invece si perde la continuità della retta che passa attraverso un rettangolo.

Infine "le figure di Orbison" risultano deformate dalle rette che fanno loro da sfondo come questi cerchi perfetti che sembrano degli ovali!

Il triangolo magico E' sconcertante... ma sembrerebbe che siamo di fronte ad un gioco di prestigio! Modificando la posizione delle aree che compongono il triangolo grande sembrerebbe che alla fine rimanga una piccola area quadrata vuota! Molti di voi mi hanno chiesto la soluzione quindi mi è sembrato giusto inserire una pagina apposita... Soluzione

Se proviamo a disegnare il triangolo su della carta millimetrata e ingrandiamo l'immagine noteremo che le linee non sono perfettamente coincidenti... Infatti se vedete bene manca una piccola striscia nell'area che dovrebbe essere del triangolo grande... Se poi rivoltiamo i pezzi... ... ci accorgiamo che adesso c'è una parte in esubero! Con un po' di logica possiamo supporre che l'area del quadrato coincide con la somma dell'area mancante nella prima immagine più quella in esubero della seconda immagine. Quindi alla fine l'area non è scomparsa ma si è semplicemente 'spostata'...

Il quadrato posto sui cerchi sembra avere i lati incurvati verso il centro. Il cerchio centrale a sinistra sembra più grande di quello che sta a destra. Non ci crederete ,ma è un cerchio perfetto

Allo stesso modo il quadrato ed il cerchio sembrano venire 'deformati' a causa delle rette uscenti da un punto!

Questi settori circolari sono uguali!                                                                                                     Questi settori circolari sono uguali!                                                                                                                                           E' sconcertante ma le linee sono pefettamente dritte!                                                                                                                                          Avete proprio indovinato! anche queste linee sono dritte!                                                                                                                                          Avete proprio indovinato! anche queste linee sono dritte!                                                                                                                                          Avete proprio indovinato! anche queste linee sono dritte! Questi settori circolari sono uguali! E' sconcertante ma le linee sono perfettamente dritte!

                                                                            Le spirali sono illusorie Fissate il punto nero e provate a muovere la testa avanti ed indietro...

Fissate la figura …si muove?

Il quadrato non esiste

Sono tutte rette parallele! I segmenti della ragnatela non sono curvi...

Non sono cuscini ma quadrati! I quadrati che formano la scacchiera in realtà non esistono!

Le forme quadrangolari che vedete nell'immagine in realtà non esistono! Le linee orizzontali sono parallele!

Quelli azzurri sono dei quadrati perfetti! Le rette verticali sono parallele!

Il Partenone Il Partenone o i templi greci in generale sono dei bellissimi esempi di illusione ottica!

Per vedere il tempio così come possiamo ammirarlo (figura 1) gli antichi greci erano costretti ad edificarlo con la colonne non parallele e con il timpano arcuato come nella fig.2. La prospettiva imponeva di edificare in questo modo! Infatti se avessero rispettato il parallelismo delle colonne e la perpendicolarità del timpano avremmo visto il tempio come disegnato nella figura n.3!

La dimostrazione dell'illusione dei due segmenti! Sono uguali!                                                                                                                                                                                              La dimostrazione dell'illusione dei due segmenti! Sono uguali!                                                                                                                                                                                              La dimostrazione dell'illusione dei due segmenti! Sono uguali! La dimostrazione dell'illusione dei due segmenti! Sono uguali!

                                                                                                                                                                     Segmenti uguali Effetto cuscino

                                                                                                                                             Effetto spirale La barra sembra allargarsi...

La strada a destra sembra salire ma è in discesa anch'essa! Chi è più magra?

I segmenti AB e CD sono uguali!

I due cerchi hanno le stesse dimensioni! I due uomini sono uguali!

Gli 'Abeti' hanno i tronchi paralleli! I cerchi poggiano sulla stessa retta! I cerchi poggiano sulla stessa retta!