Analisi dei meccanismi locali

Slides:



Advertisements
Presentazioni simili
regolare il regime delle acque a tergo del muro;
Advertisements

NORME TECNICHE PER LE COSTRUZIONI DM
PARETI Negli edifici in cemento armato, molto spesso il ruolo di trasferire le azioni sismiche è affidato alle pareti di taglio. Il maggior vantaggio dell'inserimento.
MODELLAZIONE DEGLI EDIFICI IN MURATURA
RISPOSTA DI SISTEMI ANELASTICI
Meccanica 10 8 aprile 2011 Slittamento. Rotolamento puro
Fasi del progetto di strutture di sostegno
Meccanica Cinematica del punto materiale Dinamica
Pareti di sostegno, tipologia e calcolo
Misura della costante elastica di una molla per via statica
Rotazione di un corpo rigido attorno ad un asse fisso
Consigli per la risoluzione dei problemi
Provincia di Lucca Dipartimento Infrastrutture Servizio Fabbricati
Metodi di verifica agli stati limite
MODELLAZIONE DELLA STRUTTURA
MODELLAZIONE DELLA RISPOSTA NON LINEARE
SISTEMI ELASTICI A TELAIO
caratteristiche generali Interazione azione-sistema strutturale
CONCEZIONE STRUTTURALE DELL'EDIFICIO IN MURATURA
Il terremoto di progetto considerato nelle normative per le costruzioni ha un periodo di ritorno elevato, circa 500 anni per gli edifici ordinari; le intensità.
G.M. - Informatica B-Automazione 2002/03 Estensione della conservazione dellenergia ai sistemi di punti materiali Se tutte le forze interne ed esterne.
Richiami sui metodi di misura della sicurezza
Stato limite ultimo di sezioni in c.a. soggette a pressoflessione
Lezione 4 Dinamica del punto
Università de L’AQUILA
Parte I (I Sensori) I sensori di velocità
pilastri, colonne, architravi
In tale situazione, per modeste entità della forza risulta:
ORDINE DEGLI INGEGNERI DI PISTOIA
Una volta che le pareti sottoposte ad azioni trasversali sono vincolate in testa, le pareti possono essere verificate come travi semplicemente appoggiate,
Situazione limite di rottura della fascia
Alberto Franchi Teoria e Progetto di Costruzioni e Strutture
Consolidamento di edifici in muratura
ORDINE DEGLI INGEGNERI DELLA PROVINCIA DI VITERBO
Analisi globali per edifici in muratura (a cura di Michele Vinci)
SCUOTIMENTO DEL TERRENO - Accelerogramma
LE FONDAZIONI.
ANALISI DINAMICA DELLE STRUTTURE
Consolidamento di edifici in muratura
Riferimenti normativi:
(a cura di Michele Vinci)
UNIVERSITA’ DEGLI STUDI DI NAPOLI “FEDERICO II”
analisi sismica di edifici in muratura e misti
DATI GENERALI DI CALCOLO (a cura di Michele Vinci)
Esempio Un disco rigido omogeneo di massa M=1,4kg e raggio R=8,5cm rotola su un piano orizzontale alla velocità di 15cm/s. Quale è la sua energia cinetica?
PROGETTO DI UNA STRUTTURA INTELAIATA CON PARETI IN CD”B”
L’Equilibrio dei Corpi Solidi
valutazione della risposta sismica degli edifici
RESISTENZE DEI MATERIALI
L’utilizzo di strutture modulari come soluzione antisismica
Biomeccanica Cinematica Dinamica Statica dei corpi rigidi
ANALISI STATICA NON LINEARE
DATI GENERALI DI CALCOLO (a cura di Michele Vinci)
Consolidamento di edifici in muratura (a cura di Michele Vinci)
Isolamento sismico dei ponti
Calcolo dei pilastri in Cemento Armato allo SLU
Pareti di sostegno - verifiche
L’equilibrio dei solidi
VOL. II – CAP. 3 PROGETTAZIONE STRUTTURALE DI UN EDIFICIO INDUSTRIALE PREFABBRICATO IN ZONA SISMICA Dr.ssa Antonella Colombo ASSOBETON Associazione.
Esercizi (attrito trascurabile)
IDROSTATICA.
(a cura di Michele Vinci)
Consolidamento di edifici in muratura (a cura di Michele Vinci)
Metodi di verifica agli stati limite
Università degli Studi di Roma Tre - Facoltà di Ingegneria Laurea magistrale in Ingegneria Civile in Protezione… Corso di Cemento Armato Precompresso –
Verifica allo SLU di sezioni inflesse in cap
Dinamica del moto circolare uniforme Perché un corpo si muove di moto circolare uniforme?
Esercizio-Tre blocchi di massa rispettivamente m 1 =5Kg, m 2 =2 Kg e m 3 =3Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura).
Transcript della presentazione:

Analisi dei meccanismi locali (a cura di Michele Vinci) Tutte le immagini riportate sono tratte dal testo: “Metodi di calcolo e tecniche di consolidamento per edifici in muratura” – Michele Vinci – Flaccovio Ed.

Analisi dei meccanismi locali Per gli edifici in muratura esistenti, oltre ad analisi di tipo globale (per esempio, pushover), occorre effettuare anche l’analisi dei meccanismi locali.

Analisi dei meccanismi locali Tra le più comuni tipologie di meccanismo citiamo: Ribaltamento semplice; Flessione verticale; Flessione orizzontale; Ribaltamento composto; Ribaltamento del cantonale; Sfondamento del timpano. Si segue il metodo previsto dalla normativa (C8.A.4 della Circolare 617/2009) Per l’applicazione del metodo si fanno le seguenti ipotesi: Resistenza nulla a trazione della muratura; Assenza di scorrimento tra i blocchi; Deformabilità nulla dei macroelementi; Resistenza infinita a compressione della muratura.

Analisi dei meccanismi locali Il metodo di calcolo si articola nei seguenti passi: Trasformazione di una parte della costruzione in un sistema labile, detta catena cinematica, attraverso l’individuazione di corpi rigidi, definiti da piani di frattura ipotizzabili per la scarsa resistenza a trazione della muratura, in grado di ruotare o scorrere tra loro; Valutazione del moltiplicatore orizzontale dei carichi a0 (detto anche moltiplicatore di attivazione del meccanismo) che comporta l’attivazione del meccanismo; Valutazione dell’evoluzione del moltiplicatore orizzontale dei carichi a al crescere dello spostamento dk di un punto di controllo della catena cinematica, fino all’annullamento della forza sismica orizzontale (si ottiene la curva a–d); Trasformazione della curva ottenuta in una curva di capacità a*-d*, in accelerazioni a* e spostamenti d* spettrali; Verifica di sicurezza attraverso gli spostamenti o resistenze richieste per la struttura

Analisi dei meccanismi locali Determinazione del moltiplicatore a0 Il moltiplicatore a0 può essere determinato in due modi, o attraverso l’equilibrio alla rotazione rispetto ad un punto di rotazione o attraverso il principio dei lavori virtuali. Il primo si utilizza per casi semplici, il secondo per casi più complessi. Secondo il principio dei lavori virtuali il lavoro delle forze interne e quello delle forze esterne devono essere uguali: Lfe – Lfi = 0 La normativa esplicita la precedente attraverso la seguente: Risolvendo la relazione si ottiene il moltiplicatore a0

Analisi dei meccanismi locali Determinazione del moltiplicatore a0 Esempio Uguagliando le ultime due si ottiene:

Analisi dei meccanismi locali Determinazione del moltiplicatore a0 Esempio

Analisi dei meccanismi locali Analisi cinematica non lineare In analogia con quanto visto per l’analisi globale statica non lineare , anche nel caso del calcolo dei meccanismi locali, la soluzione passa attraverso la determinazione della curva di capacità della struttura e la trasformazione del sistema reale in un sistema equivalente. Come per l’analisi pushover, anche nel caso dei meccanismi locali, la verifica si effettua confrontando la “capacità di spostamento” con lo “spostamento richiesto”. Curva di capacità Al fine di conoscere la capacità di spostamento della struttura fino al collasso, il moltiplicatore orizzontale a dei carichi deve essere valutato anche sulle configurazioni variate (o deformate) della catena cinematica. L’analisi deve essere condotta fino al raggiungimento della configurazione in cui si ottiene a = 0. In altre parole, si devono considerare più configurazioni deformate della struttura, per le quali si calcola il moltiplicatore a dei carichi.

Analisi dei meccanismi locali Analisi cinematica non lineare Nelle configurazione deformata, aumenta il braccio delle forze instabilizzanti e diminuisce quello delle forze stabilizzanti. Per questo motivo, generalmente, l’andamento della curva è decrescente.

Analisi dei meccanismi locali Analisi cinematica non lineare Per ogni configurazione variata si ottiene il valore del moltiplicatore a in funzione dello spostamento orizzontale dk del punto di controllo (generalmente coincidente con l’estremo della catena o con il baricentro delle masse), ottenendo la curva di capacità (a - dk) della catena cinematica. dk,0 è lo spostamento del punto di controllo che annulla il moltiplicatore dei carichi orizzontali

Analisi dei meccanismi locali Analisi cinematica non lineare Curva di capacità dell’oscillatore equivalente Noto l’andamento del moltiplicatore orizzontale a dei carichi in funzione dello spostamento dk del punto di controllo della struttura, occorre definire la curva di capacità dell’oscillatore equivalente, come relazione tra l’accelerazione spettrale a* e lo spostamento spettrale d*. In analogia a quanto visto per l’analisi globale, occorre definire i parametri che definiscono l’oscillatore equivalente. Massa partecipante n+m è il numero delle forze peso Pi applicate sulla struttura, le cui masse, per effetto dell'azione sismica, generano forze orizzontali sugli elementi della catena cinematica;

Analisi dei meccanismi locali Analisi cinematica non lineare Frazione di massa partecipante L’accelerazione sismica spettrale a* si ottiene moltiplicando per l’accelerazione di gravità il moltiplicatore a e dividendolo per la frazione di massa partecipante al cinematismo ed il fattore di confidenza: Accelerazione spettrale di attivazione del meccanismo

Analisi dei meccanismi locali Analisi cinematica non lineare Lo spostamento spettrale d* dell’oscillatore equivalente si ottiene, in via approssimata, noto lo spostamento del punto di controllo dk, dalla relazione seguente con riferimento agli spostamenti virtuali della configurazione iniziale (indeformata): dx,k è lo spostamento virtuale del punto assunto come riferimento per la determinazione di dk

Analisi dei meccanismi locali Resistenza e capacità di spostamento La resistenza e la capacità di spostamento relativa allo Stato limite di danno (SLD) e Stato limite di salvaguardia della vita (SLV) si ottengono dalla curva di capacità, in corrispondenza dei seguenti punti: SLD: dall’accelerazione spettrale corrispondente all’attivazione del meccanismo SLV: dallo spostamento spettrale corrispondente al minore tra: a) il 40% dello spostamento per cui si annulla l’accelerazione spettrale a*, valutata su una curva in cui si considerino solamente le azioni di cui è verificata la presenza fino al collasso; b) lo spostamento corrispondente a situazioni localmente incompatibili con la stabilità degli elementi della costruzione (ad esempio, sfilamento di travi, rottura di tiranti, ecc.), nei casi in cui questo sia valutabile.

Analisi dei meccanismi locali Verifica allo stato limite di danno (SLD) La verifica di sicurezza nei confronti dello Stato limite di danno (SLD) è soddisfatta qualora l’accelerazione spettrale di attivazione del meccanismo sia superiore all'accelerazione di picco della domanda sismica: Nel caso in cui la costruzione (catena cinematica) interessata al cinematismo sia appoggiata sul terreno di fondazione: Se la porzione di costruzione interessata dal cinematismo non è a contatto con la fondazione (posta a quota superiore), bisogna che sia verificata anche la seguente: y(Z) è il primo modo di vibrazione nella direzione considerata (Z/H) g è il corrispondente coefficiente di partecipazione modale (3N / (2N + 1)) T1 è il periodo fondamentale della struttura pari a

Analisi dei meccanismi locali Verifica allo stato limite di danno (SLV) Analisi cinematica lineare La verifica di sicurezza nei confronti dello Stato limite di danno (SLV) è soddisfatta qualora l’accelerazione spettrale di attivazione del meccanismo sia superiore all'accelerazione di picco della domanda sismica: Nel caso in cui la costruzione (catena cinematica) interessata al cinematismo sia appoggiata sul terreno di fondazione: Se la porzione di costruzione interessata dal cinematismo non è a contatto con la fondazione (posta a quota superiore), bisogna che sia verificata anche la seguente: dove q è il fattore di struttura che può essere assunto pari a 2

Analisi dei meccanismi locali Verifica allo stato limite di danno (SLV) Analisi cinematica non lineare La verifica di sicurezza nei confronti dello Stato limite di salvaguardia della vita consiste nel confronto tra la capacità di spostamento ultimo del meccanismo locale e la domanda di spostamento Dd(Ts) ottenuta dallo spettro di risposta in termini di spostamento in corrispondenza del periodo secante Ts.

Analisi dei meccanismi locali Verifica allo stato limite di danno (SLV) Analisi cinematica non lineare Se la porzione di costruzione interessata dal cinematismo non è a contatto con la fondazione (posta a quota superiore), occorre che sia verificata anche la seguente: dove H è l’altezza dell’edificio espressa in metri

Analisi dei meccanismi locali Ribaltamento semplice Tale meccanismo si verifica generalmente per la carenza di connessione tra la parete investita dal sisma e quelle ortogonali. In presenza di cordoli, tiranti, ecc., difficilmente si manifesta questo tipo di meccanismo, in quanto tali elementi ne ostacolano il ribaltamento.

Analisi dei meccanismi locali Ribaltamento semplice

Analisi dei meccanismi locali Ribaltamento semplice Cerniere cinematiche C1 (base piano 1) C2 (base piano 2) Carichi P1 (peso parete piano 1) P2 (peso parete piano 2) Ps1 (peso solaio piano 1) Sv = Ps2 (peso tetto) So (Forza statica orizz. del tetto) a0 P1, a0 P2, a0 Ps1, a0 Ps2 (Azioni inerziali)

Analisi dei meccanismi locali Ribaltamento semplice – Cerniera C2

Analisi dei meccanismi locali Ribaltamento semplice – Cerniera C2

Analisi dei meccanismi locali Ribaltamento semplice – Cerniera C2

Analisi dei meccanismi locali Ribaltamento semplice – Cerniera C2 Verifica SLD cm/s2 (Non Verificato)

Analisi dei meccanismi locali Ribaltamento semplice – Cerniera C2 Verifica SLV (analisi cinematica non lineare) Occorre calcolare il moltiplicatore dei carichi orizzontali per una configurazione deformata

Analisi dei meccanismi locali Ribaltamento semplice – Cerniera C2 Verifica SLV (analisi cinematica non lineare)

Analisi dei meccanismi locali Ribaltamento semplice – Cerniera C2 Verifica SLV (analisi cinematica non lineare) (Capacità di spostamento)

Analisi dei meccanismi locali Ribaltamento semplice – Cerniera C2 Verifica SLV (analisi cinematica non lineare) (non verificato) (verificato)

Analisi dei meccanismi locali Ribaltamento semplice – Cerniera C2 Verifica SLV (analisi cinematica non lineare)

Analisi dei meccanismi locali Ribaltamento semplice – Arretramento cerniera

Analisi dei meccanismi locali Ribaltamento semplice – Arretramento cerniera

Analisi dei meccanismi locali Ribaltamento semplice – Pareti con più paramenti

Analisi dei meccanismi locali Meccanismo di flessione verticale

Analisi dei meccanismi locali Meccanismo di flessione verticale

Analisi dei meccanismi locali Meccanismo di flessione verticale Esempio N = 30000 daN

Analisi dei meccanismi locali Meccanismo di flessione verticale Esempio (Moltiplicatore in funzione di h1)

Analisi dei meccanismi locali Meccanismo di flessione verticale Esempio

Analisi dei meccanismi locali Meccanismo di flessione verticale Esempio

Analisi dei meccanismi locali Meccanismo di flessione verticale – Parete con più paramenti

Analisi dei meccanismi locali Meccanismo di flessione orizzontale

Analisi dei meccanismi locali Meccanismo di flessione orizzontale

Analisi dei meccanismi locali Meccanismo di flessione orizzontale – Parete non confinata La soluzione del problema richiede la conoscenza dell’entità della forza H

Analisi dei meccanismi locali Meccanismo di flessione orizzontale – Parete non confinata Momento stabilizzante: Momento instabilizzante: Dall’uguaglianza delle precedenti si ottiene:

Analisi dei meccanismi locali Meccanismo di flessione orizzontale – Parete non confinata Bisogna individuare la forma dei macroelementi più probabili e scegliere quello con moltiplicatore minore

Analisi dei meccanismi locali Meccanismo di ribaltamento composto Il meccanismo di ribaltamento composta si manifesta quando pareti di muratura investite dal sisma ruotano intorno ad una cerniera cilindrica orizzontale e trascinano anche porzioni di pareti ad esse ortogonali. Generalmente questo tipo di meccanismo si manifesta quando: Ammorsamento tra pareti ortogonali ben eseguito; Assenza di elementi in testa al muro che ne impediscono la rotazione (presenza di cordoli, tiranti, ecc.). Il meccanismo è favorito anche dalla scadente fattura dei muri ortogonali di controvento che tendono a lesionarsi facilmente.

Analisi dei meccanismi locali Meccanismo di ribaltamento composto Una delle difficoltà più importanti per questo tipo di meccanismo è quella di determinare la porzione di muratura (cuneo di distacco) delle pareti ortogonali che partecipano al cinematismo. Generalmente si procede per tentativi.

Analisi dei meccanismi locali Meccanismo di ribaltamento composto Anche la tipologia dei solai può incidere sulla scelta del cuneo di distacco. Nei casi in cui il cuneo di distacco tende a zero, il meccanismo degenera in quello a ribaltamento semplice.

Analisi dei meccanismi locali Meccanismo di ribaltamento composto

Analisi dei meccanismi locali Meccanismo di ribaltamento del timpano

Analisi dei meccanismi locali Meccanismo di ribaltamento del timpano

Analisi dei meccanismi locali Meccanismo di ribaltamento del cantonale

Analisi dei meccanismi locali Meccanismo di ribaltamento del cantonale

Analisi dei meccanismi locali Meccanismo su una porzione di parete