URBINO, SOGESTA 15 GIUGNO 2010. LINDUZIONE Osserviamo che N oggetti dotati della proprietà A possiedono anche la proprietà B. Se il campione N di oggetti.

Slides:



Advertisements
Presentazioni simili
Tommaso d’Aquino: ST, I Pars, q. II
Advertisements

LIMITI:DEFINIZIONI E TEOREMI
8) GLI INTERVALLI DI CONFIDENZA
Che cosa è la Scienza? La parola scienza deriva dal Latino scientia che significa conoscenza. Scienza indica un insieme di conoscenze acquisite seguendo.
LA SCIENZA PUO’ SPIEGARE TUTTO?
Aristotele Logica.
Definizioni Chiamiamo esperimento aleatorio ogni fenomeno del mondo reale alle cui manifestazioni può essere associata una situazione di incertezza. Esempi:
Analisi delle Decisioni Funzioni di utilita’ e lotterie
Raccolta dei dati e relazioni tra variabili
Algoritmi e Dimostrazioni Stefano Berardi
Iterazione enumerativa (for)
Appunti di inferenza per farmacisti
Che cosa intendiamo per Dinamica della combustione? Che cosa intendiamo per Dinamica? Comportamenti che variano nel tempo.
Progettare una ricerca: approcci e metodologie
CAMPO ELETTRICO E POTENZIALE
SECONDO PRINCIPIO DELLA TERMODINAMICA
Ricerca della Legge di Controllo
Modelli simulativi per le Scienze Cognitive Paolo Bouquet (Università di Trento) Marco Casarotti (Università di Padova)
Lezione 8 Numerosità del campione
Corso di Matematica Discreta cont. 2
5 febbraio 2010 Prof Fabio Bonoli
Laboratorio “Matematica dell’incerto”
Logica formale e logica discorsiva 2° Lezione
Analisi della varianza
La biologia (da bios = vita e logos = conoscenza, studio)
Logica Matematica Seconda lezione.
La teoria atomica della materia
C ONCETTI B ASE DI S TATISTICA. C ONCETTI BASE DI S TATISTICA WWW. CENTROSTUDIGORGIA. COM La statistica studia i fenomeni ripetibili del mondo con determinazione.
INTELLIGENZA E MACCHINE CALCOLATRICI
La probabilità Schema classico.
LE POTENZE NEI TEST INVALSI, NEI QUESITI DELL’ESAME DI STATO E NEI TEST DI AMMISSIONE ALLE FACOLTÀ UNIVERSITARIE.
Il metodo scientifico.
1.PROBABILITÀ A. Federico ENEA; Fondazione Ugo Bordoni Scuola estiva di fonetica forense Soriano al Cimino 17 – 21 settembre 2007.
Pierdaniele Giaretta Primi elementi di logica
La teoria del ragionamento inferenziale
Errori casuali Si dicono casuali tutti quegli errori che possono avvenire, con la stessa probabilità, sia in difetto che in eccesso. Data questa caratteristica,
URBINO, 16 NOVEMBRE 2010 PENSANDO DI SERA. Oggi non si dubita più che parti diverse del cervello decidano per noi in anticipo rispetto alla nostra impressione.
QUANDO ALCUNI BAMBINI SI SONO SOFFERMATI SULLA POTENZA DEL SOLE ABBIAMO CAPITO CHE IL CALORE DEL SOLE NON C'ENTRA CON LA LUNGHEZZA DELLE OMBRE MA … C'ENTRA.
ESTENSIONI SEMPLICI e TEOREMA DELL’ELEMENTO PRIMITIVO
Obbiettivo L’obiettivo non è più utilizzare il campione per costruire un valore o un intervallo di valori ragionevolmente sostituibili all’ignoto parametro.
A cura della Dott.ssa Claudia De Napoli
è … lo studio delle caratteristiche di regolarità dei fenomeni casuali
La scomposizione col metodo di Ruffini
Valutare la difficoltà dei problemi
Donald Davidson La causazione come relazione tra eventi FILOSOFIA ANALITICA DEL LINGUAGGIO (MODULO ONTOLOGIA) Presentazione di Virgilia Potetti 22 novembre.
Lezione B.10 Regressione e inferenza: il modello lineare
La M.Q. è una teoria scientifica che ha causato un vero e proprio terremoto concettuale che ha causato seri problemi di ordine filosofico ……… ….. i quali.
Corso di Laurea in Scienze e tecniche psicologiche
Continua. Il problema dell’induzione Il problema dell'induzione può essere riassunto nella domanda: "siamo giustificati razionalmente a passare dai ripetuti.
UNIVERSITÀ DEGLI STUDI DI PALERMO Facoltà di Scienze della Formazione Corso di laurea in Scienze della Formazione Primaria LA TEORIA DELLE SITUAZIONI.
“Teoria e metodi della ricerca sociale e organizzativa”
Intervalli di confidenza
Spiegazione di alcuni concetti
Ciascuno di noi ha, dunque, la sua storia...io vi racconto la mia...
Sociologia Generale R. Ghigi - Sociologia Generale – Scienze della Formazione – (7CFU) Corso di Sociologia Generale Facoltà di Scienze della Formazione.
Corso di Laurea in Scienze e tecniche psicologiche
Metodologia della ricerca e analisi dei dati in (psico)linguistica 24 Giugno 2015 Statistica inferenziale
Le immagini (e non solo) sono state da:
1 Lezione XV-b Avviare la presentazione col tasto “Invio”
La covarianza.
Analisi matematica Introduzione ai limiti
Sistemi di equazioni lineari. Sistemi di primo grado di due equazioni a due incognite Risolvere un sistema significa trovare la coppia di valori x e y.
Russell e gli universali appunti per Filosofia della scienza.
METODI E TECNOLOGIE PER L’INSEGNAMENTO DELLA MATEMATICA Lezione n°17.
Cap. IV Proposizioni di apprezzamento A cura di: Arianna Gualillo e Barbara Di Lello.
CAPITOLO 6 La ricerca scientifica in Psicologia ‘è scientificamente dimostrato che…’. Cos’è una scienza? ‘la scienza è un modo di ottenere conoscenze in.
Se A e B sono variabili random statisticamente indipendenti P (2) (B,A)=P(B)P(A) P(A)=probabilità che la variabile stocastica A assuma un certo valore.
INSIEMI E LOGICA PARTE QUARTA.
Abduzione e prova Giovanni Tuzet Università Bocconi Seminario “Democrazia e verità” Università di Bari,
Transcript della presentazione:

URBINO, SOGESTA 15 GIUGNO 2010

LINDUZIONE Osserviamo che N oggetti dotati della proprietà A possiedono anche la proprietà B. Se il campione N di oggetti è sufficientemente numeroso e vario inferiamo che: TUTTI GLI A SONO B.

IL PRINCIPIO DI INDUZIONE Che cosa ci autorizza a inferire lenunciato generale dallosservazione degli N casi? Questa procedura normalmente si chiama induttiva. Potremmo formulare così il principio di induzione: Se si è osservata la presenza della proprietà B in un campione sufficientemente rappresentativo di oggetti che hanno la proprietà A, allora si può inferire che tutti gli A sono B.

IL PROBLEMA DI HUME Quale è la giustificazione del principio di induzione? Cioè che cosa legittima il suo uso? Potremmo dire che lo abbiamo utilizzato in passato in moltissime occasioni anche molto diverse fra loro e ha quasi sempre funzionato, per cui siamo autorizzati a continuare a usarlo. Tuttavia questa è già uninferenza di tipo induttivo, per cui sembra una giustificazione circolare.

ENUNCIATI UNIVERSALI, p=0 Il problema può essere formulato in un altro modo. Si potrebbe dire grossolanamente che la probabilità che un enunciato universale sia vero è proporzionale al numero di casi positivi osservati fratto il numero di casi possibili. Tuttavia il numero di casi possibili di un qualsiasi enunciato scientifico universale è potenzialmente infinito, per cui tale probabilità sarebbe comunque zero.

LA REGOLA DI LAPLACE Si potrebbe rispondere che non è importante affermare lenunciato generale, quanto prevedere che cosa accadrà il caso successivo. Se abbiamo osservato N casi in cui un A è B quale è la probabilità che il prossimo A sia B? Consideriamo unurna che contiene un numero grande quanto si vuole di palline che sono o rosse o bianche. Ne abbiamo estratte n e m sono rosse. Se assumiamo che tutte le ipotesi di distribuzione delle palline sono equiprobabili, arriviamo alla celebre formula di Laplace, secondo cui la probabilità che la prossima pallina sia rossa è data da m+1/n+2.

IL PRINCIPIO DI RAGIONE INSUFFICIENTE A parte il fatto che normalmente i sistemi con cui abbiamo a che fare non sono così semplici come le palline bianche o rosse, resta il problema del principio di ragion insufficiente che Laplace applica. Chi ci dice che a priori tutte le possibili percentuali di palline rosse e bianche sono equiprobabili? Quasi sempre la situazione è disomogenea. Inoltre, se limitiamo il problema a prevedere la probabilità del caso successivo, togliamo molto valore conoscitivo alla scienza.

TEOREMA DI BAYES Inoltre, per dimostrare la regola di Laplace, abbiamo applicato il calcolo delle probabilità; in particolare il celebre teorema di Bayes: Dove h è lipotesi che stiamo esaminando, e le evidenze a disposizione e p la funzione probabilità. Che cosa ci garantisce che lapplicazione del teorema di Bayes è legittima?

IL NUOVO ENIGMA DELLINDUZIONE Definiamo il predicato blerde per blu fino al tempo t e verde da t in poi. Facciamo lipotesi di essere al momento t. Abbiamo osservato N zaffiri e sono tutti blu. Quindi abbiamo N+1/N+2 probabilità che il prossimo zaffiro che incontriamo sia blu. Tuttavia tutti gli zaffiri che abbiamo incontrato finora sono anche blerdi, per cui possiamo dire che abbiamo la stessa probabilità che il prossimo zaffiro sia blerde! Il che è palesemente falso.

IL FALSIFICAZIONISMO Torniamo al problema dellinduzione. A questo punto uno scienziato potrebbe chiedersi se linferenza induttiva è effettivamente importante per la sua concreta attività di ricerca. In effetti Popper, proprio a causa della difficoltà di risolvere il problema dellinduzione, vi rinuncia. Quello che conta per lui non è tanto la conferma di una teoria, ma la sua falsificabilità. Le teorie non vengono costruite induttivamente dai dati sperimentali, ma elaborate con intuizioni geniali e audaci, che poi vanno controllate e scartate appena vengono falsificate.

CRITICHE AL FALSIFICAZIONISMO A parte il fatto che le teorie scientifiche nella pratica vivono in un mare di falsificazioni e non vengono di certo scartate per questo, ma aggiustate con ipotesi ausiliarie. Resta inoltre che molta parte delle scienze naturali, soprattutto quelle non esatte, come le scienze della vita, si avvalgono continuamente di generalizzazioni. Vediamo un caso.

ARTICOLO SCIENTIFICO

STRUTTURA ARGOMENTATIVA Il paper che stiamo considerando procede nella maniera seguente: 1. Prende in considerazione un certo tipo di cellule, cioè la linea U937, che normalmente, se sottoposta a raggi UV-B dà inizio a morte cellulare programmata a causa della produzione di radicali liberi tipo il gruppo ossidrile. In particolare viene presa in considerazione la via mitocondriale alla morte cellulare programmata.

PARTE MORFOLOGICA 2. E noto che la melatonina ha capacità anti-ossidanti e funge da spazzino per i radicali liberi. Ci si domanda se tale effetto sia presente nel caso delle cellule della linea U937 trattate con UV-B. 3. Per rispondere a tale quesito, si usa innanzitutto una metodologia morfologica, cioè si esaminano al microscopio elettronico cellule U937 che non hanno subito irradiazione (A-C), cellule che sono state trattate prima con melatonina e poi hanno subito la radiazione (D-F) e cellule irradiate, ma senza melatonina (G-L).

IMMAGINE AL MICROSCOPIO

LANALISI CITOMETRICA 4. Da queste immagini si potrebbe inferire che la risposta alla domanda proposta sia positiva. Ma, e questo è decisivo, gli autori non si sbilanciano ancora. 5. Si sa che la via mitocondriale alla morte cellulare programmata passa per un abbassamento del potenziale della membrana, che permette lentrata di proteine che avviano il processo. Cellule trattate con melatonina prima dellesposizione ai raggi UV-B mostrano un mantenimento dei potenziali della membrana cellulare.

LANALISI BIOCHIMICA 6. Non soddisfatti gli autori indagano anche leffetto del trattamento con melatonina dal punto di vista biochimico, scoprendo che il rilascio del citocromo C, che è decisivo nella morte cellulare programmata, viene inibito. 7. Alla fine del paper gli autori affermano con decisione lenunciato universale la melatonina sfavorisce la morte cellulare programmata nelle cellule U937 causata da trattamento con UV-B.

RAGIONAMENTO INDUTTIVO Addirittura gli autori generalizzano dal caso delle cellule della linea U937 a tutte le cellule. Ma questo qui non ci interessa. In questo caso luniverso del discorso è quello delle cellule della linea U937 irradiate, A è il trattamento preventivo con melatonina e B è la diminuzione di apoptosi. Dunque gli autori hanno generalizzato dallo poche cellule che hanno osservato a tutti i casi, ovvero hanno ragionato induttivamente.

NON SOLO INDUZIONE Emerge chiaramente che non tutte le coppie di proprietà A e B sono uguali. Per gli autori, laspetto meramente induttivo, cioè lanalisi morfologica, non è stato sufficiente per affermare lenunciato universale. Gli autori, infatti, hanno messo in luce un possibile meccanismo mediante il quale la melatonina impedisce lapoptosi, misurando il potenziale della membrana e il rilascio del citocromo C. In pratica, linduzione non si regge da sola.

CORRELAZIONI STATISTICHE Quando le statistiche dimostrarono la correlazione fra fumo e cancro al polmone, le case produttrici si appellarono al fatto che questa non era una prova che il fumo causi il cancro. In effetti avrebbe potuto esserci un effetto di messa in ombra (screening). Ad esempio, se i fumatori in media sono anche grandi consumatori di caffè, potrebbe essere il caffè la causa del cancro. Solo quando si sono scoperte le proprietà mutagene dei prodotti di combustione delle sigarette si è avuta la prova definitiva.

GIUSTIFICAZIONE DELLINDUZIONE Un campione di dati non è sufficiente a giustificare un enunciato universale. E necessario anche ricondurre il legame fra A e B alle nostre conoscenze di sfondo, cioè trovare un meccanismo che giustifichi la relazione fra A e B. Dunque linferenza induttiva è del tutto legittima solo quando viene inserita adeguatamente nellambito delle nostre conoscenze.

GIUSTIFICAZIONE REALISTA DELLINDUZIONE Si potrebbe obbiettare che tutte le nostre conoscenze si basano sullinduzione, per cui questa giustificazione sembra circolare. Tuttavia se procedure induttive basate su dati sperimentali molto diversi fra loro convergono, allora possiamo ipotizzare che le nostre conoscenze abbiano colto la struttura di una realtà sottostante che giustifica la verità dei nostri enunciati. Una giustificazione realista dellinduzione.