Un atomo è quindi composto da un nucleo formato da nucleoni (protoni e neutroni) e da elettroni (in egual numero dei protoni, quando l'atomo è elettricamente.

Slides:



Advertisements
Presentazioni simili
Particelle subatomiche
Advertisements

Dalla Grecia ai giorni nostri
STRUTTURA DELL'ATOMO Protoni (p+) Neutroni (n°) Elettroni (e­) Gli atomi contengono diversi tipi di particelle subatomiche.
Evoluzione dei modelli atomici
Dalla Grecia ai giorni nostri
Breve storia dei modelli atomici
La struttura dell’atomo
Relazione fra energia e frequenza
LEZIONE 2 Onde e particelle Equazione di Planck/Equazione di Einstein
La struttura atomica Dal modello atomico di Thomson al modello della meccanica quantistica (Schroedinger)
Orbitali atomici e numeri quantici
Struttura dell'atomo L'atomo è costituito da: nucleo elettroni
STRUTTURA ATOMICA Agli inizi del 1900 (dopo la scoperta dell’elettrone) si pensava che le leggi della meccanica classica (Newton) potessero essere applicate.
STRUTTURA ATOMICA Agli inizi del 1900 (dopo la scoperta dell’elettrone) si pensava che le leggi della meccanica classica (Newton) potessero essere applicate.
Principi fisici di conversione avanzata (Energetica L.S.)
Come sono sistemate le particelle all’interno dell’atomo?
La luce solare.
La luce solare.
MODELLI ATOMICI secondo Joseph John Thomson Ernest Rutherford Niels Bohr Arnold Sommerfeld Luis De Broglie Werner Heisemberg Ervin Schrdinger.
Elettricità Prof. Antonello Tinti
I PRINCìPI DELLA MECCANICA QUANTISTICA
Condizioni di ripetibilita L'esperimento sia condotto sempre dallo stesso osservatore. Siano usati sempre gli stessi strumenti e le stesse procedure. Siano.
Lezione 3 – L’atomo si spiega in base ad onde stazionarie di … elettroni.
MODELLI ATOMICI secondo Joseph John Thomson Ernest Rutherford Niels Bohr Arnold Sommerfeld Luis De Broglie Werner Heisemberg Ervin Schrdinger Dova Patrizia.
Corso di Laurea in Ingegneria Aerospaziale A. A
LA NATURA DELLA LUCE E IL MODELLO ATOMICO DI BOHR
Il modello atomico a orbitali
GLI ATOMISTI Leucippo e Democrito presero dal loro predecessore Parmenide (520 – 455 a. C.) l’idea di particelle elementari basilari, e da Eraclito quella.
Le particelle dell’atomo Modulo 3 U.D. 1
Unità Didattica 2 La natura duale della luce e l’atomo di idrogeno
Copertina 1.
INTERAZIONE ATOMI – ENERGIA RADIANTE SPETTRI ATOMICI DI
L’atomo di idrogeno Elena Dalla Bonta’ Dipartimento di Astronomia
Sviluppo della fisica quantistica
Le basi della teoria quantistica
Radioattività e decadimenti radioattivi.
Un po' di fisica nucleare: La radioattività
Le interazioni delle radiazioni elettromagnetiche con la materia offrono lopportunità di indagare in vario modo sulla natura e sulle caratteristiche di.
Classificazione della materia
Modello Atomico di Thomson
L'ATOMO.
MODELLI ATOMICI Rutherford Bohr (meccanica quantistica)
Principi fisici di conversione avanzata (Energetica L.S.)
Un testo a scelta ricevimento
L’atomo di Bohr Fu grazie alle nuove idee della fisica quantistica che Bohr riuscì a «superare» le difficoltà incontrate da Rutherford, apportando una.
Apertura L'ATOMO di Alessandro Bruni IV G.
Esperienza di Rutherford
Informazioni importanti circa la dimensione dell’atomo e la distribuzione della massa concentrata nel nucleo Rappresentazione dell’atomo Rutherford (1911)
Proprietà e Trasformazioni della MATERIA
COME E’ FATTA LA MATERIA?

Onde e particelle: la luce e l’elettrone
Per la luce: onda/particella
Abbiamo parlato di.. Energie nucleari Difetto di massa
Onde e particelle: la luce e l’elettrone
La teoria quantistica 1. Fisica quantistica.
Struttura Atomica Come è fatto un atomo
Classificazione della materia
Introduzione alla chimica generale
Thomson. Il suo atomo Esperimenti di Thomson Rutherford.
Breve Introduzione al laboratorio: Vedere le particelle di Donato Di Ferdinando.
La Teoria atomica Già dal IV secolo a.C. alcuni filosofi greci (Leucippo, Epicuro e Democrito) e romani (Tito Lucrezio Caro), ipotizzarono che la materia.
Ripasso per il compito Teorie atomiche : Thomson, Rutherford, Bohr numero atomico, numero di massa, isotopi.
La struttura dell’atomo
Gli elettroni nell’atomo e il sistema periodico
Mario Rippa La chimica di Rippa primo biennio.
Transcript della presentazione:

Un atomo è quindi composto da un nucleo formato da nucleoni (protoni e neutroni) e da elettroni (in egual numero dei protoni, quando l'atomo è elettricamente neutro) che gli ruotano attorno. Ogni atomo è indicato  da una sigla e da due numeri : il numero atomico (il numero dei protoni identico al numero degli elettroni) indicato in basso vicino al simbolo dell’elemento ed il numero di massa (il numero dei nucleoni, ovvero dei protoni e dei neutroni che costituiscono il nucleo) indicato in alto.

Un atomo può esistere in natura con un ugual numero atomico ma diverso numero di massa. Simili atomi sono detti isotopi ed hanno le stesse proprietà chimiche (cioè di creare composti, molecole, dalle stesse  proprietà). Esistono isotopi stabili e radioattivi, le diverse quantità sono espresse come abbondanza %

Teoria di Thompson L´atomo è una sfera. In essa la carica positiva è distribuita uniformemente mentre gli elettroni si trovano dispersi all´interno della sfera come i semi in una anguria. La carica dell’atomo è globalmente neutra.

Esperimento di Rutherford Una sorgente radioattiva sparava un fascio di particelle alfa (42He2+), contro una sottilissima lamina d'oro (le particelle alfa hanno una massa molto più piccola di un atomo d'oro). Attorno alla lamina d'oro era stato disposto uno schermo ricoperto di solfuro di zinco, in modo che le particelle alfa colpendo lo schermo, lasciassero tracce microscopiche nel solfuro di zinco. Secondo la teoria per cui gli atomi sono sfere permeabili neutre, ci si aspettava che le particelle alfa, dotate di alta energia, non avessero problemi a sfrecciare attraversando qualche atomo. Le particelle alfa avrebbero dovuto semplicemente passare dritte attraverso la lamina d'oro e lasciare delle tracce in una piccola regione dello schermo posto dietro la lamina.

Anche se la maggior parte delle particelle alfa era deviata solo di poco rispetto alla traiettoria iniziale, alcune erano molto deviate e pochissime addirittura rimbalzavano indietro, nella direzione da cui provenivano. Era noto che cariche elettriche dello stesso tipo provocavano una significativa deviazione di ''proiettili " molto più pesanti.   Un modello di nucleo centrale ed elettroni ruotanti su orbite esterne non poteva essere spiegato con le leggi della fisica classica.

La luce ha anche un carattere corpuscolare se si considera costituita da fotoni ciascuno con la propria energia E= hn h =6,6 10-34 j s

Caratteristiche delle onde

Molte informazioni sugli elettroni vengono dagli spettri di emissione atomica prodotti da atomi eccitati per effetto termico o elettrico.

Ogni linea spettrale corrisponde alla l relativa alla energia emessa, e lo spettro è l’impronta digitale dei vari elementi. Bohr scrisse equazioni del moto dell’e- per H secondo orbite circolari a raggi discreti ed E quantizzate (ogni orbita corrispondeva a un preciso livello energetico dell’elettrone). Gli elettroni potevano passare solo da un’orbita all’altra, ma le leggi della fisica classica non spiegavano la stabilità dell’atomo anche dopo il miglioramento con le orbite ellittiche di Sommerfield. Il modello di Bohr invece applicava la meccanica classica all´elettrone come se si trattasse di una pallina da tennis in moto. Si dovette passare alla meccanica quantistica per spiegare e descrivere meglio il moto degli elettroni.

Relazione di De Broglie Anche gli elettroni come le radiazioni elettromagnetiche hanno natura corpuscolare e ondulatoria Ad ogni particella di massa m in movimento a velocità v è associata un´onda l= h/mv Relazione di De Broglie Tale relazione vale per tutta la materia ma è evidenziabile solo per le particelle microscopiche.

Principio di indeterminazione di Heisemberg È impossibile determinare esattamente, ad un dato istante, la posizione di una particella avente massa della ordine di grandezza di un elettrone e la sua velocità, in quanto la relazione che lega le incertezze sulla posizione e sul prodotto velocità x massa (quantità di moto p) della particella è:      DxDp= h/4p con h = costante di Planck = 6,6252 * 10-27 erg s = 6,6257*10-34J*s.    Volendo infatti osservare un elettrone attraverso una sorgente di luce che lo illumini, essa emetterebbe fotoni ad alta energia che, interagendo con gli elettroni, comporterebbero una deviazione dalla loro traiettoria e una variazione della loro velocità. Utilizzando anche una sorgente di fotoni a bassa energia, non sarebbe possibile determinare la posizione dell'elettrone con sicurezza

I risultati di Heisenberg e De Broglie: Sanciscono che il metodo con il quale sino ad allora era stato studiato l’ atomo era inappropriato, ed aprono pertanto la strada alla meccanica ondulatoria. L’equazione di Schroedinger basata sulla meccanica ondulatoria: È una funzione matematica  il cui quadrato indica la probabilità che l´elettrone ha di trovarsi in un determinato volume unitario dello spazio. Essa deve rispondere ai 3 seguenti requisiti : normalizzazione   la probabilità totale (estesa a tutto lo spazio) di trovare un elettrone è massima 100% . univocità              in ogni punto dello spazio è plausibile un solo valore della funzione d´onda. limitatezza    in nessun punto la densità di probabilità può essere infinita. Soluzione di Schroedinger del tipo n,l,m (funzione d’onda) con tre numeri correlati tra loro detti numeri quantici. Soluzione precisa solo per l’atomo di H

il n° quantico n (1,2,3…): Identifica una distanza dal nucleo detta raggio di Bohr per la quale l´energia dell’elettrone assume un determinato valore. Per n = 1 l´energia è minima, negativa ed è lo stato a cui tutti gli elettroni tendono, essendo il più stabile. Per n = ∞ l´energia è massima e pari a 0 in quanto l´elettrone si trova a distanza infinita dal nucleo. Il n° quantico l (0,…..n-1): È in relazione con energia e forma della regione di spazio occupata dall’elettrone Il n° quantico m (-l, 0,+l): Influenza gli orientamenti spaziali delle superfici limitanti le regioni di spazio a maggiori probabilità di trovare e-.

ORBITALE È una funzione d´onda che rispetta le 3 restrizioni ed alla quale sono stati assegnati valori plausibili per i 3 numeri quantici. Ogni orbitale è indicato con numero (corrispondente ad n) e una lettera (dipendente da l) e rappresenta la regione di spazio che racchiude 90-95% di probabilità di trovare e-. GUSCIO o STRATO È l´insieme degli orbitali aventi lo stesso numero quantico principale.

Gli orbitali s e p.