Descrizione geometrica del moto

Slides:



Advertisements
Presentazioni simili
Le forze ed i loro effetti
Advertisements

1) Moto in una dimensione
Meccanica 6 21 marzo 2011 Cambiamento di sistema di riferimento
CINEMATICA SINTESI E APPUNTI.
Meccanica aprile 2011 Urti Conservazione della quantita` di moto e teorema dell’impulso Energia cinetica Urti elastici e anelastici Urto con corpi.
Meccanica 5 31 marzo 2011 Lavoro. Principio di sovrapposizione
CHE COSA TRATTIENE I PIANETI NELLE LORO ORBITE?
Isaac Newton
Descrizione geometrica del moto
Gravitazione Universale
Meccanica Cinematica del punto materiale Dinamica
Applicazione h Si consideri un punto materiale
Lavoro ed energia cinetica: introduzione
Le forze conservative g P2 P1 U= energia potenziale
Il lavoro [L]=[F][L]=[ML-2T -2] S.I.: 1 Joule = 1 m2 kg s-2
Dinamica del punto materiale
Un corpo di massa m= 0.5 kg, che si muove su di un piano orizzontale liscio con velocità v=0.5 m/s verso sinistra, colpisce una molla di costante elastica.
Lavoro di una forza costante
La quantità di moto Data una particella di massa m che si muove con velocità v Si definisce quantità di moto la quantità: È un vettore Prodotto di uno.
La quantità di moto La quantità di moto di un sistema di punti materiali si ottiene sommando le quantità di moto di ciascun punto materiale Ricordando.
Dinamica dei sistemi di punti
Dinamica del punto materiale
Il lavoro dipende dal percorso??
Il lavoro oppure [L]=[F][L]=[ML2T -2] S.I.: 1 Joule = 1 m2 kg s-2
Dinamica del punto materiale
Le cause del moto: la situazione prima di Galilei e di Newton
Il prodotto vettoriale
G.M. - Informatica B-Automazione 2002/03 Estensione della conservazione dellenergia ai sistemi di punti materiali Se tutte le forze interne ed esterne.
SISS 2005/2006 MECCANICA Antonio Ballarin Denti. CINEMATICA Descrizione geometrica del moto Studiamo: 1) Moto in una dimensione 2) Moto nel piano - Moto.
La conservazione dell’energia
Lo studio delle cause del moto: dinamica
LAVORO di una forza costante
NEL CAMPO GRAVITAZIONALE
I PRINCIPI FONDAMENTALI DELLA DINAMICA (Leggi di Newton)
Corso di Fisica - Lavoro ed energia
Diagramma di corpo libero
1 MOTI PIANI Cosenza Ottavio Serra. 2 La velocità è tangente alla traiettoria v (P P, st, (P–P)/(t-t)v.
Parte VII: Gravitazione
Moto circolare vario • y x Versore radiale Versore tangente s(t) φ(t)
PRIMO PRINCIPIO DELLA DINAMICA
9. I principi della dinamica
un sistema rigido di punti materiali
Dinamica: le leggi di Newton
Relatore prof. re CATELLO INGENITO
Esercizio In un ambiente in cui è stato fatto il vuoto lascio cadere in caduta libera da una stessa altezza una piuma di 10 g, una sfera di legno di 200.
Isaac Newton I principi matematici della filosofia naturale di Newton 1686.
Esercizi (attrito trascurabile)
E n e r g i a.
E SISTEMI DI RIFERIMENTO
7. Le forze e il movimento (I)
6. I principi della dinamica (II)
Isaac Newton
1 Lezione VI Avviare la presentazione col tasto “Invio”
Esercizio-Tre blocchi di massa rispettivamente m 1 =5Kg, m 2 =2 Kg e m 3 =3Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura).
I PRINCIPI DELLA DINAMICA
Prof.ssa Veronica Matteo
FORZA Qualsiasi causa che altera lo stato di quiete o di MRU di un corpo (se libero) o che lo deforma (se vincolato)
LAVORO E ENERGIA. LAVORO Il lavoro prodotto da una forza F su un corpo, è dato dal prodotto tra la componente della forza Fs, lungo lo spostamento e lo.
Moti relativi y P y’ O O’ x  x’
Cinematica del punto materiale Studia il moto dei corpi senza riferimento alle sue cause Il moto è completamente determinato se e` nota la posizione del.
Transcript della presentazione:

Descrizione geometrica del moto CINEMATICA Descrizione geometrica del moto Studiamo: 1) Moto in una dimensione - Moto uniforme - Moto uniformemente accelerato - Il caso del grave 2) Moto nel piano - Natura vettoriale delle grandezze cinematiche

CINEMATICA IN UNA DIMENSIONE Grandezze fondamentali velocità scalare media in (t1, t2) MKS: m/s velocità scalare istantanea Se vm è la stessa per qualunque intervallo di tempo, il moto si dice: uniforme. accelerazione media in (t1, t2) accelerazione istantanea MKS: m/s2

MOTO UNIFORMEMENTE ACCELERATO a = cost LEGGI FONDAMENTALI Se a t = 0, x0 = 0: Se a t = 0, anche v0 = 0: Si ricava quindi:

Ricapitolando: a = 0 a = cost a = 0 v t a = cost v t Area = vt Area=

caduta libera lungo la verticale Moto uniformemente accelerato h y Leggi del moto Se a t = 0, y0 = h e v0 = 0 :

v0 Salita e discesa tempo di salita quota raggiunta SALITA distanza percorsa tempo di caduta DISCESA velocità finale > v0 Da cui si ricava: t1 = t2

a = cost

LA LEGGE DI GRAVITAZIONE UNIVERSALE universalità Ogni corpo esistente nell’universo attira ogni altro corpo con una forza gravitazionale. G è la costante di gravitazione universale. direzione e verso Le forze di gravitazione esistenti tra due punti materiali (tra loro opposte per il principio di azione e reazione) hanno come retta di applicazione la retta individuata dalle posizioni dei due punti. intensità L’intensità della forza è proporzionale al prodotto delle masse dei punti materiali e inversamente proporzionale al quadrato della loro distanza.

È una legge fondamentale di natura… Spiega la legge empirica di Keplero che pone in relazione il raggio di un orbita R con il suo periodo T: una Forza che decresce come 1/R2 porta ad orbite che sono sezioni coniche (ellissi, cerchi, parabole e iperboli). “forza gravitazionale in cielo” Spiega la legge empirica di Galileo per la caduta libera dei gravi: la terra esercita sopra ogni corpo una forza di attrazione gravitazionale. “forza gravitazionale in terra” La fisica della terra diventa identica alla fisica del cielo

… C.V.D ACCELERAZIONE DI GRAVITÀ SULLA TERRA Legge di gravitazione universale + Secondo principio della dinamica Legge di Galileo MT …da cui: costante! In prossimità della Terra tutti i corpi cadono con la stessa accelerazione costante indipendente dalla massa del corpo. … C.V.D

FORZA CENTRIFUGA Nei sistemi di riferimento che ruotano di moto circolare uniforme rispetto ad un sistema di riferimento inerziale è presente una forza fC data da: a0 : è l’accelerazione centripeta (segno -) rispetto al sistema di riferimento inerziale r : distanza dall’asse di rotazione : velocità angolare del sistema di riferimento v = r: velocità del punto fC cresce al crescere di r ed è diretta verso l’esterno: FORZA CENTRIFUGA

m m Esempio: Moto circolare uniforme di un corpo vincolato ad un palo da una fune: Diagramma delle forze: 1) Nel sistema di riferimento inerziale: T = mv2 / r m 2) Nel sistema di riferimento in rotazione: T = mv2 / r fc = mv2 / r m

L’Energia “l’energia di un corpo è la misura del lavoro che esso può compiere in virtù del particolare stato in cui si trova” Caratteristica fondamentale di questa grandezza è che ad essa è associato un principio di conservazione : “nella mutevolezza delle forme e degli scambi di energia, l’energia totale di un sistema (isolato) si conserva.” energia meccanica energia elettrica Trasformazione L’esistenza di principi di conservazione è una delle principali scoperte in fisica e rimane inalterata anche nella fisica moderna. Accrescono la nostra comprensione della dinamica e ne semplificano l’analisi.

Il lavoro rappresenta l’energia impressa ad un corpo da L’Energia presenta una molteplicità di forme e di processi di scambio: lavoro meccanico, energia cinetica, energia potenziale, calore…. Il lavoro rappresenta l’energia impressa ad un corpo da una forza esterna. Una forza compie lavoro ogni volta che produce uno spostamento del corpo su cui agisce. l’unita di misura è il Joule Nel caso di FORZA COSTANTE: Il lavoro fatto da una F costante è dato dal prodotto dell’intensità della F per la proiezione dello spostamento subito dal suo punto di applicazione nella direzione della F .

Energia cinetica Interpretiamo Ecin come: energia associata al moto. Grandezza scalare Unità di misura: Joule Dipende da m e dallo stato di moto istantaneo di un corpo (v) Il lavoro compiuto dalla F modifica l’ Ecin …per uno spostamento finito si ottiene: TEOREMA DELL’ENERGIA CINETICA: (1° risultato verso l’individuazione di un principio di conservazione…) L’ Ecin di un corpo può essere modificata (aumentata E > 0, diminuita E > 0) quando una forza compie un lavoro L  0 e si ha: L = Ecin

U è definita a meno di una costante: Energia potenziale U Interpretiamo U come l’energia associata alla posizione. È la misura del lavoro che un corpo può compiere in virtù della sua posizione in un campo di forze conservativo. Tale lavoro non dipende dal percorso per andare dal punto A al punto B, ma solo dalla posizione di A e B. A B I II U è definita a meno di una costante: è possibile fissare arbitrariamente lo zero dell'energia potenziale senza ambiguità, poiché il lavoro è definito in termini di variazioni di U e la forza come gradiente.

Si definisce Energia Meccanica la quantità: CONSERVAZIONE DELL’ENERGIA MECCANICA TOTALE Si definisce Energia Meccanica la quantità: Etot = Ecin + U L’ENERGIA MECCANICA TOTALE DI UN SISTEMA È UNA COSTANTE DEL MOTO SE IL SISTEMA È ISOLATO E GLI OGGETTI CHE LO COMPONGONO INTERAGISCONO SOLO MEDIANTE FORZE CONSERVATIVE lllllllllllllll Legge fondamentale di natura: più efficace e profonda del metodo newtoniano

Applicazione: il piano inclinato θ mg h r Etot = U = mgh v = 0 Galileo solleva la sfera alla quota h dotandola di energia potenziale U. Lasciata libera la sfera acquista velocità v. Durante il moto vale: Trovo la costante ponendomi in z = h. Vale: per  z h z E = mgh E = mgz + ½ mv²

PROCEDIMENTO GENERALE Si definisce il sistema da studiare. Si sceglie una posizione di riferimento per U=0 e la si usa coerentemente. Si scrive l’energia totale del sistema nel punto, per esempio A, in cui si vuole determinare una certa quantità incognita (come la velocità o la quota); EA = UA + KA. Si trova un altro punto, per esempio il punto B, in cui si conosce tutto riguardo al moto del corpo e si scrive l’energia totale in quel punto: EB = UB + KB . La conservazione dell’energia implica che EA = EB; si eguagliano le due energie e si risolve rispetto alla quantità incognita.