Massa atomica relativa

Slides:



Advertisements
Presentazioni simili
Mole e Numero di Avogadro
Advertisements

Dal 1961 si usa una scala basata sul carbonio-12 ossia sull'isotopo 12C A tale isotopo è stata arbitrariamente assegnata una massa di 12 unità di massa.
SOLUZIONI.
Corso di Laurea in Medicina e Chirurgia CORSO INTEGRATO DI CHIMICA Anno Accademico Lezione 1.
Soluzioni e proprietà colligative
Proprietà colligative delle soluzioni
Soluzioni Miscela omogenea di due o più sostanze solvente (preponderante) + soluto In genere solvente liquido (es.acqua) E soluto solido, liquido, aeriforme.
Solubilità e proprietà colligative
Calcolare la formula minima dalla composizione percentuale
masse: protone e neutrone
CONCENTRAZIONE DI UNA SOLUZIONE
CONCENTRAZIONE DI UNA SOLUZIONE
SOLUZIONI.
EQUILIBRI DI SOLUBILITA’
Peso Atomico e Molecolare
Concentrazione Chimica Le Soluzioni
REAZIONI DI NEUTRALIZZAZIONE
AnalisiQualitativa_Orioli(cap2)1 VELOCITA DI REAZIONE ED EQUILIBRI.
Le moli Il peso di una millimole di (NH4)2HPO4 è … 132 g 114 g
Corso di Fondamenti di Chimica
CHIMICA LA MOLE La quantità chimica:la mole.
Corso di Chimica Lezioni 3-4
Le soluzioni Una soluzione viene definita come un sistema omogeneo costituito da due o più componenti Il componente presente in maggiore quantità viene.
Le soluzioni Sono miscele omogenee di due o più sostanze (in forma di molecole, atomi, ioni) di cui quella presente in quantità maggiore è definita solvente,
Capitolo 13 Le proprietà delle soluzioni 1.Perchè le sostanze si sciolgono? 2.La solubilità 3.La concentrazione delle soluzioni 4.Le soluzioni elettrolitiche.
Chimica Generale CORSO DI LAUREA TRIENNALE IN ATTIVITÀ DI PROTEZIONE CIVILE LE SOLUZIONI Le soluzioni sono sistemi monofasici costituiti da una miscela.
Soluzioni e proprietà colligative
pH = - log [H+] = log 1/[H+]
DI QUESTA PRESENTAZIONE
14 CAPITOLO Le soluzioni Indice 1 1. Le soluzioni
I gas Gas ideali Gas reali Umidità.
SOLUZIONI.
5 CAPITOLO La mole Indice 1 La mole: unità di quantità di sostanza
CONCENTRAZIONI SOLUZIONI
Il processo di evaporazione
Proprietà colligative delle soluzioni
Unità didattica: Le soluzioni
NUCLIDI Un nuclide è un atomo caratterizzato dal numero di massa A (numero di neutroni e di protoni) e dal numero atomico Z (numero di protoni) A N Z Lezione.
Calcoli applicati alla chimica analitica
ACIDI e BASI: Teoria di Arrhenius ( )
Diagrammi di fase Se aumento T, la tensione di vapore aumenta, perché aumentano il numero di molecole allo stato gassoso. Aumentando la superficie del.
Composti poco solubili
Massa atomica relativa dei nuclidi
Dalla Struttura degli atomi e delle molecole alla chimica della vita
La materia e le sue caratteristiche
Valori di elettronegatività: H, 2,1;
Transizioni di stato.
g esatti di una certa soluzione contengono 10 g di NaCl
Le sostanze La materia è costituita da sostanze
Le soluzioni Misure di concentrazione Frazione molare (mol/mol)
Stati di aggregazione della materia
Chimica generale con elementi di chimica inorganica
Stato liquido Un liquido e’ caratterizzato da una struttura dinamica, continuamente soggetta a modifiche. I liquidi sono quindi caratterizzati da un ordine.
MERCOLEDI’ GIOVEDI’ MARTEDI’ LEZIONE esercizi
ELEMENTI gruppo periodo.
Programma Misure ed Unità di misura. Incertezza della misura. Cifre significative. Notazione scientifica. Atomo e peso atomico. Composti, molecole e ioni.
SOLUZIONI.
Come possiamo conoscere il numero di atomi o molecole presenti in una definita quantità di sostanza?
GLI STATI DELLA MATERIA E LE SOLUZIONI. Stati di aggregazione della materia.
Normalità La quantità di sostanza coinvolta in una reazione chimica viene determinata in base ai relativi equivalenti chimici. In chimica, la normalità.
7 – Le soluzioni.pdf – V 2.0 – Chimica Generale – Prof. A. Mangoni– A.A. 2012/2013 Solubilità Finora abbiamo parlato di sostanze pure, per cui l'equilibrio.
La materia è qualsiasi cosa abbia una massa e occupi uno spazio. Esiste in tre stati: Solido Forma e volume determinati Gas Forma non rigida e volume.
LAVOISIER Conservazione della massa nelle reazioni chimiche PROUST Un determinato composto contiene gli elementi in rapporti di peso indipendenti dal modo.
Lezioni Le proprietà colligative e la diluizione.
© Paolo Pistarà © Istituto Italiano Edizioni Atlas CAPITOLO 1. Le soluzioniLe soluzioni 2. Solubilità e temperaturaSolubilità e temperatura 3. Dipendenza.
LE SOLUZIONI.
Non esiste una equazione di stato, come nel caso dei gas. Liquidi e solidi Nei liquidi e nei solidi le molecole sono molto più vicine tra loro; le forze.
I Liquidi Proprietà dei liquidi.
Le miscele omogenee.
Transcript della presentazione:

Massa atomica relativa La massa di un atomo è troppo piccola rispetto all’unità di misure del kg. Viene quindi definita in rapporto a quella di un atomo di riferimento. Per convenzione la massa del 12C è stata definita come esattamente = a 12. 1/12 della sua massa è l’unità di riferimento = u.m.a. Particella (simbolo) Carica assoluta Carica relativa Massa assoluta Massa relativa Protone (p) +1.6021773 x 10-19 C +1 1.6726 x 10-24 g 1.0073 Elettrone (e) -1.6021773 x 10-19 C -1 9.109390 x 10-28 g 0.0005486 Neutrone (n) 1.6749 x 10-24 g 1.0087

Massa atomica Si definisce peso atomico di un elemento la massa relativa e media di quell'elemento rispetto ad 1/12 della massa di un nuclide di 12C. Il peso atomico dell'idrogeno è: 1,008 Quello dell’ossigeno è: 15,99

Massa Molecolare somma dei pesi atomici di tutti gli elementi contenuti in una molecola di una sostanza elementare o di un composto I2: 126.9x2= 253.8 H2SO4: (1.008 x 2) + 32.064 + (15.999 x 4) = 98.076

Peso formula Quando una sostanza non è formata da molecole discrete ma da un insieme infinito di atomi o ioni NaCl: 22.9898 + 35.453 = 58.443 K2Cr2O7: (39.10 x 2) + (51.996 x 2) + (15.999 x 7) = 294.2

Massa atomica, massa molecolare e peso formula sono tutte MASSE MOLARI Le unità di massa (sia atomiche che molecolari o formula) se espresse in grammi sono massa di una mole

La mole Le grandezze fondamentali e le unita' di misura nel Sistema Internazionale (SI)   Grandezza fondamentale Unita’ Simbolo lunghezza metro m massa kilogrammo Kg tempo secondo s corrente elettrica ampere A temperatura kelvin K intensita’ luminosa candela cd quantita’ di sostanza mole mol  

N è il numero di atomi che stanno in esattamente 12 g di 12C. La mole è una quantità di atomi tale che la sua massa in g è pari alla sua massa atomica. N è il numero di atomi che stanno in esattamente 12 g di 12C. N = 6,0221367(36) ×1023 Poiché N è un numero per mole, esso ha unità di misura mol-1 ed è chiamata costante di Avogadro.  N = 6,0221367(36) ×1023 mol-1

La mole Una mole di 23Na è la quantità di sostanza che contiene N atomi di 23Na Una mole di H2O è la quantità di sostanza che contiene N atomi di H2O E’ un multiplo della massa molecolare; numericamente è uguale alla massa molecolare, ma è espressa in grammi 1 mol di CaSO4 = 136 g In una reazione o in una formula chimica contano le moli, non i grammi! Es: 2H2 + O2  2H2O

Una mole di sostanze diverse mostra pesi diversi ! Mole e massa molare Una mole di sostanze diverse mostra pesi diversi ! In una reazione o in una formula chimica contano le moli, non i grammi!

m (g) n (moli) = P.M. (g/mole) MOLE Quantità espressa in grammi pari alla massa della sostanza (atomo o molecola) espressa in unità di massa atomica. Es. NaCl (cloruro di sodio) P.A. Na : 22.99 d P.A. Cl : 35.45 d P.M. NaCl : 58.44 d 1 mole di NaCl 58.44 g Una mole di una qualsiasi sostanza contiene lo stesso numero di particelle , detto numero di Avogadro : N = 6.023 x 1023 Il numero di moli contenuto in una nota massa di una sostanza può essere calcolato dalla seguente relazione : m (g) n (moli) = P.M. (g/mole)

Formula minima e formula vera Composti sconosciuti Analisi qualitativa = Ca, S, O Ca = 29,41% S = 23.52% O = (resto) 47.07% % Ca 29,41 g/100g = = 0,73 mol/100g 40 g/mol 40 g/mol % S 23,52 g/100g 32 g/mol 32 g/mol % O 47,07 g/100g = = 2,94 mol/100g 16 g/mol 16 g/mol Analisi quantitativa Formula minima 0.73 0.73 2.94 Ca ------ = 1 S ------ = 1 O ------  4 0.73 0.73 0.73 CaSO4 Determinazione MM Massa Molecolare determinata sperimentalmente: 136 g/mol Formula vera Ca S O 40 + 32 + (16 x 4) = 136 136 / 136 = 1 , la formula MINIMA coincide con quella VERA

La nomenclatura chimica I composti possono essere indicati con nomi comuni oppure con nomi sistematici Alcuni composti sono fatti da cationi ed anioni (ionici), altri non si separano in cariche elettriche (covalenti) Nomenclatura dei composti ionici. anione - catione. (cloruro di sodio, carbonato di calcio)  Nomenclatura di composti molecolari. come se il composto fosse ionico. Un composto binario: cloruro d'idrogeno HCI solfuro d'idrogeno H2S

Composti ionici Unità formula e peso formula. Un composto ionico è rappresentato da una formula chimica che indica il numero relativo di atomi di ciascun elemento nel composto. Nel cloruro di sodio: NaCl. Nel carbonato di sodio: Na2CO3 Nel solfato d'ammonio (NH4)2SO4. Un'unità formula è un gruppo di ioni che coincide con la formula del composto.

miscele omogenee di più composti Soluzioni miscele omogenee di più composti Le soluzioni sono miscele omogenee di una sostanza, il soluto, in un'altra, il solvente (relativamente abbondante) I chimici fanno avvenire la maggiore parte delle loro reazioni in soluzione perché in questo modo i reagenti sono mobili e possono entrare in contatto e reagire

Solvente: Componente predominante Soluti: Componenti presenti in quantità minori Solvente Soluto B Soluto A Soluto C

Misura della concentrazione Quando effettuiamo calcoli stechiometrici riguardanti reazioni che avvengono in soluzione, dobbiamo conoscere quante moli di un soluto sono presenti in un dato volume.

Percento in peso 2 g NaCl + 98 g H2O NaCl al 2% (p/p) Dire che una soluzione acquosa di NaCl è al 2% in peso significa che in 100 g della soluzione ci sono 2 g di NaCl (e 98 di acqua). 2 g NaCl + 98 g H2O

Percento in peso 0,9 g NaCl + 99,1 g H2O NaCl allo 0.9% (p/p) La soluzione fisiologica di NaCl ha una concentrazione dello 0.9% in peso. Questo significa che in 1 kg di soluzione sono contenuti 9 g di NaCl. 0,9 g NaCl + 99,1 g H2O

10 g saccarosio + 90 g H2O Percento in peso Saccarosio al 10% (p/p) In 1 kg di una soluzione acquosa di saccarosio al 10% sono contenuti 100 g di saccarosio. 10 g saccarosio + 90 g H2O

Frazione molare Per una soluzione costituita di na moli di A, nb moli di B, nc moli di C, …, nz moli di Z, si definisce frazione molare di un componente il rapporto fra il numero di moli di quel componente ed il numero totale di moli presenti nella miscela Frazione molare di A = xa = na na + nb + nc + ,,, + nz La somma delle frazioni molari è uguale a 1

Frazione molare (esempio) x = Una soluzione è costituita da 36 g di acqua e 64 g di metanolo a) 36 g di acqua (PM 18) corrispondono a 2 moli di acqua b) 64 g di metanolo (PM 32) corrispondono a 2 moli dell’alcole La frazione molare dell’acqua si calcola come segue: x = 2 2 + 2 = 0.5 H2O

Frazione molare (esempio) xglucosio = Una soluzione è costituita da 18 g di glucosio e 18 g di fruttosio dissolti in 1800 g di acqua. a) 18 g di glucosio (PM 180) corrispondono a 0.1 moli dello zucchero b) 18 g di fruttosio (PM 180) corrispondono a 0.1 moli dello zucchero b) 1800 g di acqua (PM 18) corrispondono a 100 moli di acqua La frazione molare del glucosio si calcola come segue: xglucosio = 0.1 0.1 + 0.1 + 100 = 0.000998

Molarità M = N. moli di soluto Volume di soluzione

Molarità Dire che una soluzione di glucosio è 1M significa che in un litro di soluzione è dissolta una mole di glucosio. Soluzione 1M di glucosio 1 litro Glucosio 180.1272 g Glucosio C6H12O6 PM glucosio : 6 x 12.0112 + 12 x 1.008 + 6 x 15,994 = 180.1272 In 1 litro di soluzione sono disciolti 180,1272 g di glucosio

Normalità N. equivalenti di soluto N = Volume di soluzione

Nella reazione con idrossido di sodio HCl + NaOH  NaCl + H2O H2SO4 + 2 NaOH  Na2SO4 + 2H2O H3PO4 + 3 NaOH  Na3PO4 + 3H2O Nella reazione con idrossido di sodio 1 mole di H2SO4 è equivalente a 2 moli di HCl 1 mole di H3PO4 è equivalente a 3 moli di HCl

2 equivalenti dell’acido 1 mole di H3PO4 contiene HCl + NaOH  NaCl + H2O H2SO4 + 2 NaOH  Na2SO4 + 2H2O H3PO4 + 3 NaOH  Na3PO4 + 3H2O 1 mole di H2SO4 contiene 2 equivalenti dell’acido 1 mole di H3PO4 contiene 3 equivalenti dell’acido

HCl PM = PE = 36.5 H2SO4 PM = 98 PE = 49 H3PO4 PM = 98 PE = 32,66 HCl + NaOH  NaCl + H2O H2SO4 + 2 NaOH  Na2SO4 + 2H2O H3PO4 + 3 NaOH  Na3PO4 + 3H2O HCl PM = PE = 36.5 H2SO4 PM = 98 PE = 49 H3PO4 PM = 98 PE = 32,66

Dire che una soluzione di acido solforico è 1N significa che in un litro di soluzione è dissolto un equivalente dell’acido. 1 litro 49.028 g H2SO4 Soluzione 1 N ( 0.5 M) Acido solforico H2SO4 PM H2SO4 : 2 x 1.008 + 1 x 32,064 + 4 x 15,994 = 98.056 Essendo per H2SO4 : PE = 1/2 PM …. In 1 litro di soluzione 1 N sono disciolti 49.028 g di acido solforico.

Molalità m = N. moli di soluto Massa di solvente* Solo solvente, senza soluto * espressa in chilogrammi

Dire che una soluzione acquosa di glucosio è 1 molale significa che in 1 kg di acqua è dissolta una mole di glucosio. Glucosio C6H12O6 PM glucosio : 6 x 12.0112 + 12 x 1.008 + 6 x 15,994 = 180.1272 Per preparare una soluzione acquosa 1 m di glucosio 1 mole (180,1272 g) di glucosio viene dissolta con 1 kg di acqua

Importanza del numero delle molecole La frazione molare rapporto tra il numero di moli di molecole di un certo tipo e il numero totale di moli di molecole presenti la molalità della soluzione il numero di moli di soluto per chilogrammo di solvente la parte per milione (ppm) il numero di particelle di soluto presenti in 1 milione di molecole di soluzione

Percento in peso e densità L’acido solforico (H2SO4) concentrato è al 87.7 % p/p, la sua densità è di 1,800 kg/Litro. Quale è la sua concentrazione molare? 877 g/kg X 1.8 kg/L = 1578.6 g/L 1578.6 g/L / 98 g/mol = 16.1 mol/L

Elettroliti e non-elettroliti Le sostanze che si sciolgono per dare soluzioni di ioni (per esempio cloruro di sodio) e che conducono elettricità sono dette elettroliti. Invece le sostanze le cui soluzioni non conducono l'elettricità, perché il soluto rimane allo stato molecolare (glucosio ed etanolo), sono dette non elettroliti.

Elettroliti HCl  H + Cl - KCl  K + Cl - H2O  H + OH - HF  H + F - H2S  H + HS - S - - Na2S  Na+ S - - HPO3  H+ PO3 - H3PO4  H+ H2PO4 - HPO4 - - PO4 - - - H2SO4  H+ HSO4 - SO4 - - H2CO3  H+ HCO3 - CO3 - - CaCO3  Ca + + CO3 - - K2SO4  K + SO4 - - KMnO4  K + MnO4 - Mg(OH)2  Mg + + 2OH - NaOH  Na + OH - Fe(OH)3  Fe + + + 3OH -

Saturazione e solubilità quando il solvente ha dissolto tutto il soluto possibile ed una parte resta non disciolta la soluzione è detta satura una soluzione satura è una soluzione in cui il soluto disciolto è in equilibrio dinamico con quello indisciolto Una soluzione satura rappresenta il limite della capacità del soluto a sciogliersi in una data quantità di solvente, è quindi una misura naturale della solubilità del soluto dipendono dalla natura del solvente, dalla temperatura e, per i gas, dalla pressione

Dipendenza della solubilità dal soluto Data, ad esempio, la loro notevole solubilità, molti nitrati si ritrovano raramente nei depositi minerali. La bassa solubilità di molti fosfati è un vantaggio per lo scheletro degli animali e dell'uomo dato che le ossa sono in gran parte costituite da fosfato di calcio gli idrogeno-fosfati sono più solubili dei fosfati gli idrogeno-carbonati (bicarbonati, HCO3-) sono più solubili dei carbonati. L’anidride carbonica si scioglie nell’acqua, e solubilizza i carbonati, questi vengono poi rilasciati

Dipendenza della solubilità dalla natura del solvente la dipendenza della solubilità di una sostanza dalla natura chimica del solvente può essere riassunta con la regola che “il simile scioglie il simile” un liquido polare come l'acqua è un solvente molto migliore di uno apolare (tipo il benzene) per composti ionici e polari liquidi non polari quali benzene e tetracloroetilene (C2Cl4) sono solventi migliori per i composti apolari

Effetto della temperatura e della pressione sulla solubilità Tutti i gas hanno solubilità minore all'aumentare della temperatura la solubilità di un gas in un liquido è proporzionale alla pressione parziale del gas, sono più solubili a pressioni più elevate

Abbassamento della tensione di vapore Legge di Raoult: la tensione di vapore di una soluzione di un soluto non volatile è proporzionale alla frazione molare del solvente nella soluzione il soluto occupa una parte della superficie della soluzione, riducendo cosi la velocità con la quale le molecole lasciano quest'ultima

Innalzamento del punto di ebollizione L'innalzamento del punto di ebollizione è proporzionale alla molalità m della soluzione dove kb è la costante ebulloscopica del solvente Considerare la molalità in termini di ioni, non di formula per i composti ionici

Abbassamento del punto di congelamento Un soluto diminuisce il punto di congelamento (o di solidificazione) di una soluzione: abbassamento crioscopico Quando à presente un soluto, un numero minore di molecole del solvente è in contatto con la superficie del solido perché‚ alcune delle posizioni che occupavano sono ora occupate dalle particelle del soluto La diminuzione del punto di congelamento di una soluzione ideale è proporzionale alla molalità dove kf è la costante crioscopica del solvente

Osmosi L'osmosi è il passaggio di un solvente attraverso una membrana semipermeabile La pressione necessaria per arrestare il flusso del solvente è detta pressione osmotica Il soluto ha un effetto sulla velocità con cui le molecole del solvente passano attraverso la membrana da ciascun lato. La velocità è minore dal lato della soluzione perché‚ sebbene lo stesso numero di molecole prema sulla membrana, solo quelle del solvente possono attraversarla

membrana semipermeabile (fa passare solo il solvente) solvente con soluto A B solvente puro flusso di solvente (osmosi) Pressione osmotica = pressione che occorre esercitare su A per bloccare il flusso osmotico

OSMOSI P Soluzione acquosa H2O p

Pressione osmotica La pressione osmotica equivale alla pressione che occorre esercitare per contrastare il passaggio di solvente dal comparto di destra al comparto di sinistra Soluzione acquosa H2O C Si può sperimentalmente osservare che p p = C x R x T

Calcolo pressione osmotica p x V = n R T p n R T V Dove n = numero delle particelle in soluzione, espresso in moli. Per non elettroliti n = moli Per elettroliti bisogna tener conto della dissociazione (Es. per NaCl n=moli x 2) = ̶̶