Lezione n° 18: 12-13 Maggio 2009 - Problema del trasporto: formulazione matematica Anno accademico 2008/2009 Prof. Cerulli – Dott.ssa Gentili Lezioni di.

Slides:



Advertisements
Presentazioni simili
Premessa: si assume di aver risolto (correttamente
Advertisements

Flusso Massimo Applicazione di algoritmi
Algoritmi e Strutture Dati
Introduzione ai grafi Grafo diretto e non diretto
Introduzione Cosa sono le reti di Petri?
Algoritmi e Strutture Dati
Rappresentazione di grafi
Algoritmi e Strutture Dati
Prof.ssa Chiara Petrioli -- Fondamenti di programmazione 1, a.a. 2009/2010 Corso di Fondamenti di programmazione a.a.2009/2010 Prof.ssa Chiara Petrioli.
Corso di Fondamenti di programmazione a.a.2009/2010
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 12/05/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 05/05/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 20/03/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 28/04/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 19/05/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Prof.ssa Chiara Petrioli -- corso di programmazione 1, a.a. 2006/2007 Corso di Programmazione 1 a.a.2006/2007 Prof.ssa Chiara Petrioli Corso di Laurea.
IL MODELLO DI REGRESSIONE MULTIPLA
Algoritmo di Ford-Fulkerson
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati.
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati.
Capitolo 11 Grafi e visite di grafi Algoritmi e Strutture Dati.
Flusso Massimo Applicazione di algoritmi
Flusso Massimo Applicazione Algoritmi Esercizio 1 Sia dato la seguente rete di flusso, in cui la sorgente è il nodo 1 e la destinazione è il nodo 6. I.
Laboratorio di Linguaggi lezione IX Marco Tarini Università dellInsubria Facoltà di Scienze Matematiche, Fisiche e Naturali di Varese Corso di Laurea in.
Marco Tarini Università dellInsubria Facoltà di Scienze Matematiche, Fisiche e Naturali di Varese Corso di Laurea in Informatica Anno Accademico 2007/08.
Algoritmi e Strutture Dati (Mod. B)
Seminario su clustering dei dati – Parte II
Modelli e Algoritmi della Logistica
Modelli e Algoritmi per la Logistica
Modelli e Algoritmi per la Logistica
1. ( punti 7 ) Siano dati un insieme di localizzazioni potenziali (nodi grandi) ed un insieme di clienti da servire (nodi piccoli). Il costo di afferenza.
1. ( punti 7 ) Siano dati un insieme di localizzazioni potenziali (nodi grandi) ed un insieme di clienti da servire (nodi piccoli). Il costo di afferenza.
Algoritmi e Strutture Dati
Composizione grafica dott. Simone Cicconi CORSO DI ECONOMIA POLITICA MACROECONOMIA Docente: Prof.ssa M. Bevolo Lezione n. 15 II SEMESTRE A.A
Università degli Studi di Padova Progetto Lauree scientifiche Buratto Alessandra Dipartimento Di Matematica Pura Ed Applicata Liceo Scientifico "L. da.
Prof. Cerulli – Dott.ssa Gentili
Prof. Cerulli – Dott.ssa Gentili
Lezioni di Ricerca Operativa Corso di Laurea in Informatica
Prof. Cerulli – Dott.ssa Gentili
Prof. Cerulli – Dott.ssa Gentili
Prof. Cerulli – Dott.ssa Gentili
Prof. Cerulli – Dott.ssa Gentili

Laureando: Enrico Masini
Algoritmi e Strutture Dati
Prof. Cerulli – Dott.ssa Gentili
Prof. Cerulli – Dott.ssa Gentili
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 17/04/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Algoritmi Paralleli e Distribuiti a.a. 2008/09 Lezione del 08/05/2009 Prof. ssa ROSSELLA PETRESCHI a cura del Dott. SAVERIO CAMINITI.
Prof. Cerulli – Dott.ssa Gentili
Prof. Cerulli – Dott.ssa Gentili
Prof. Cerulli – Dott.ssa Gentili
Prof. Cerulli – Dott.ssa Gentili
Gli algoritmi del minimo percorso
Programmazione lineare
Esercizio cross–docking
Flusso Massimo Applicazione di algoritmi
Flusso di Costo Minimo Trasformazioni Equivalenti e Trasformazioni Inverse Viene data la seguente rete di flusso, in cui i valori riportati vicino agli.
Prof. Cerulli – Dott. Carrabs
Flusso di Costo Minimo Applicazione di algoritmi: Cammini Minimi Successivi (SSP) Esercizio 1 Sia data la seguente rete di flusso, in cui i valori riportati.
Lezioni di Ricerca Operativa Corso di Laurea in Informatica
OTTIMIZZAZIONE DI UN PERCORSO GRAFO CAMMINO MINIMO.
Lezione n° 5: Esercitazione
Lezione n° 8 - Matrice di base. - Soluzioni di base ammissibili. - Relazione tra vertici di un poliedro e soluzioni basiche. - Teorema fondamentale della.
Lezione n° 10 Algoritmo del Simplesso: - Coefficienti di costo ridotto - Condizioni di ottimalità - Test dei minimi rapporti - Cambio di base Lezioni di.
Lezioni di Ricerca Operativa Corso di Laurea in Informatica
Lezione n° 15 Teoria della dualità: - Interpretazione Economica Lezioni di Ricerca Operativa Corso di Laurea in Informatica Università di Salerno Prof.
Lezioni di Ricerca Operativa Corso di Laurea in Informatica
Prof. Cerulli – Dott. Carrabs
Lezione n° 14 Teoria della dualità: - Teorema forte della dualità - Teorema degli scarti complementari Lezioni di Ricerca Operativa Corso di Laurea in.
Transcript della presentazione:

Lezione n° 18: Maggio Problema del trasporto: formulazione matematica Anno accademico 2008/2009 Prof. Cerulli – Dott.ssa Gentili Lezioni di Ricerca Operativa Corso di Laurea in Informatica ed Informatica Applicata Università di Salerno

Problema del Flusso a costo Minimo FORMULAZIONE

Problema del Flusso a costo Minimo FORMULAZIONE In forma matriciale: NOTA: 1. La matrice A(m,n) è la matrice di incidenza nodo-arco, ogni colonna è associata ad un arco, il singolo elemento della matrice è dato da: 2. Il rango di questa matrice è: r(A)=m-1 (e i vettore colonna con tutti 0 eccetto un 1 in posizione i-ma.)

Un particolare problema di flusso a costo minimo: Il Problema del Trasporto l m fornitori producono o 1,...,o m quantità di un certo prodotto l n clienti richiedono d 1,...,d n quantità di prodotto l il prodotto può essere trasportato da ogni fornitore ad ogni cliente NOTA: Il grafo sottostante è un grafo bipartito dove i nodi origine (fornitori) hanno solo archi uscenti ed i nodi destinazione (clienti) hanno solo archi entranti

Il problema: determinare quali quantità di prodotto da trasportare tra ogni coppia (i,j) di fornitori-clienti in modo da minimizzare il costo complessivo del trasporto.

Formulazione del problema. Le variabili: la quantità di prodotto trasportata su ciascun arco sono variabili continue La funzione obiettivo: il costo del trasporto complessivo

I vincoli: l la quantità totale di prodotto fornita da ciascun fornitore deve essere uguale alla disponibilità del fornitore stesso l la quantità totale di prodotto ricevuta da ciascun cliente deve essere uguale a quella richiesta

l le quantità di prodotto trasportate sugli archi sono sempre non negative

Il problema del trasporto: FORMULAZIONE

Ipotesi di ammissibilità (condizione di bilanciamento): Perché il problema possa ammettere una soluzione deve essere verificata la seguente condizione sui dati che stabilisce che la quantità totale di prodotto disponibile deve essere uguale alla richiesta totale del prodotto stesso.