22-Nov-121 Riassunto lezione precedente mixing tra stati isoscalari dellottetto (8,1) e del singoletto (1,1) di SU(6); ipotesi di pure mixing rispettata.

Slides:



Advertisements
Presentazioni simili
Corso di Chimica Fisica II 2011 Marina Brustolon
Advertisements

Gli Acceleratori e i Rivelatori di Particelle
Laboratori Nazionali di Frascati INFN
Modello Standard … e oltre Danilo Babusci INFN - Laboratori Nazionali di Frascati.
D. BabusciMasterClass 2007 Modello Standard … e oltre.
Istituzioni di Fisica Subnucleare A
Istituzioni di Fisica Subnucleare A
Il modello a Quark statico
Lezione 2 Caratteristiche fondamentali delle particelle: massa
Il Neutrino in Astrofisica : La materia oscura Anisotropie del CMB Osservazione universo ad alto red- shift Meccanismi stellari ( fusione, neutronizzazione.
G. Pugliese Biofisica, a.a Raggi cosmici Sono particelle e nuclei atomici di alta energia che, muovendosi quasi alla velocità della luce, colpiscono.
Decadimenti radiativi rari dei K nellesperimento NA48 del CERN Collaborazione NA48 Cagliari, Cambridge, CERN, Dubna, Edimburgo, Ferrara, Firenze, Mainz,
Lezione 10 Parità Parità intrinseca Isospin Multipletti di isospin.
Lezioni Principio di Pauli esteso Coniugazione di carica
Il modello a Quark statico
Massimo Lenti INFN-Firenze 2005
03-Dic-121 Riassunto della lezione precedente formula generale di Rosenbluth per scattering inclusivo (an)elastico; confronto con caso elastico puntiforme.
Riassunto lezione precedente
31-Ott-071 Riassunto della lezione precedente verifica sperimentale di QPM in reazioni elettrodeboli : 1.DIS con (anti)neutrini su nuclei isoscalari !
30-Ott-081 Riassunto della lezione precedente teoria generale dello scattering da sonda leptonica: sez. durto per scattering inclusivo elastico da particella.
05-Nov-091 Riassunto della lezione precedente proprieta` delle distribuzioni dei quark di valenza e del mare nel QPM estraibili da DIS e - scattering su.
03-Dic-101 Riassunto della lezione precedente interazione debole distingue stati di parita` diversa ! nuova struttura antisimmetrica in tensori leptonico.
Riassunto della lezione precedente
Riassunto lezione precedente
01-Dic-101 Riassunto della lezione precedente sez. durto elementare calcolabile in QED; confronto con sez. durto elastica in regime di DIS ! funzioni di.
Schema riassunto precedente lezione fattorizzazione e universalita` nel QPM: dal DIS al Drell-Yan (DY); definizioni di cinematica e invarianti per DY scaling.
20-Dic-121 Riassunto della lezione precedente regola di somma GDH : test di proprietà fondamentali dellampiezza di foto-assorbimento su nucleone polarizzato;
14-Dic-121 Riassunto della lezione precedente e + e inclusivo : formalismo e interpretazione in QPM scaling della sezione durto totale ; rapporto R test.
Riassunto della lezione precedente
10-Dic-121 Riassunto della lezione precedente interazione debole distingue stati di parità diversa: nuova struttura antisimmetrica in tensori leptonico.
13-Dic-121 Riassunto della lezione precedente Drell-Yan: cinematica, formule generali ; QPM picture test di N c test sperimentali del QPM : scaling di.
10-Ott-131 Fisica Nucleare II Marco Radici Stanza 1-56, tel F.E. Close An Introduction to.
7-Nov-071 Riassunto della lezione precedente Drell-Yan: cinematica, formule generali QPM picture ! test di N c, test della fattorizzazione e universalità
Riassunto della lezione precedente
10-Oct-071 Fisica Adronica Marco Radici Stanza P-48, tel Bibliografia C.T.E.Q. Handbook of perturbative.
15-Nov-121 Riassunto lezione precedente inclusione del moto orbitale dei quark; classificazione degli stati secondo la simmetria SU(6) O(3) barioni: usando.
07-Dic-101 Riassunto della lezione precedente e + e - inclusivo : formalismo e interpretazione in QPM scaling della sezione durto totale rapporto R ! test.
05-Nov-081 Riassunto della lezione precedente Approssimazioni del QPM: fattorizzazione tra processo elementare sonda-partone e processi adronici tra partoni.
Il modello standard e come ci si è arrivati
Ed unificazione delle forze
Riassunto lezione precedente
Riassunto lezione precedente
17-Dic-121 Riassunto della lezione precedente DIS con sonda leptonica e bersaglio adronico polarizzati; se bersaglio ha spin = ½ 2 nuove funzioni di struttura.
Riassunto della lezione precedente
19-Nov-121 Riassunto lezione precedente applicazioni delle funzioni donda di barione e mesone secondo SU(6) O(3) : calcolo del momento magnetico anomalo.
21-Ott-131 Riassunto lezione precedente moto orbitale dei quark; simmetria SU(6) O(3); potenziale di oscillatore armonico e multipletti 56 S +, 70 M -,
02-Dic-131 Riassunto della lezione precedente DIS con sonda leptonica e bersaglio adronico polarizzati; bersaglio con spin = ½ 2 nuove funzioni di struttura.
28-Nov-131 Riassunto della lezione precedente Semi-Inclusive DIS (SIDIS) : formalismo e interpretazione in QPM ipotesi fattorizzazione universalità delle.
Fisica Nucleare II Marco Radici Stanza 1-56, tel Bibliografia
04-Nov-131 Riassunto della lezione precedente vari motivi per introdurre nuovo numero quantico per i quark (colore), spettroscopici e dinamici: problemi.
24-Ott-131 Riassunto lezione precedente applicazioni delle funzioni donda di barione e mesone secondo SU(6) O(3): calcolo del momento magnetico di N mixing.
20-Feb-041 Schema riassunto precedente lezione introduzione al Quark Parton Model (QPM) DIS inclusivo, funzioni di struttura; relazione di Callan-Gross.
28-Ott-131 Riassunto lezione precedente mixing tra stati isoscalari dellottetto (8,1) e del singoletto (1,1) di SU(6); ipotesi di pure mixing rispettata.
14-Nov-131 Riassunto della lezione precedente formula generale di Rosenbluth per scattering inclusivo (an)elastico; confronto con caso elastico puntiforme.
Quark e decadimento beta -
19-Dic-141 Riassunto della lezione precedente OPE su DIS inclusivo; operatore di correlazione q-q Φ al leading twist coinvolge tre strutture indipendenti:
17-Ott-141 Riassunto lezione precedente Evidenza spettroscopica di multipletti quasi degeneri; organizzabili in gruppi separati secondo simmetria SU(2)
23-Ott-141 Riassunto lezione precedente moto orbitale dei quark; simmetria SU(6) ⊗ O(3); potenziale di oscillatore armonico e multipletti 56 S +, 70 M.
27-Ott-141 Riassunto lezione precedente applicazioni delle funzioni d’onda di barione e mesone secondo SU(6) ⊗ O(3): calcolo del momento magnetico di N.
30-Ott-141 Riassunto della lezione precedente vari motivi per introdurre nuovo numero quantico per i quark (colore), spettroscopici e dinamici: problemi.
14-Nov-141 Riassunto della lezione precedente interazione debole distingue stati di parità diversa: ⇒ nuova struttura antisimmetrica in tensori leptonico.
03-Nov-141 Riassunto della lezione precedente Linee generali della teoria dello scattering con sonde elettromagnetiche: - sezione d’urto inclusiva - sezione.
10-Nov-141 Riassunto della lezione precedente Calcolo sez. d’ urto elementare e confronto con formula di Rosenbluth in regime DIS; funzioni di struttura.
6-Nov-141 Riassunto della lezione precedente formula generale di Rosenbluth per scattering inclusivo (an)elastico; confronto con caso elastico puntiforme.
24-Nov-141 Riassunto della lezione precedente DIS polarizzato : proprietà generali di S μ ; tensore adronico e struttura antisimmetrica; due nuove funzioni.
29-Nov-121 Riassunto della lezione precedente Linee generali della teoria dello scattering con sonde elettromagnetiche: - sezione d’urto inclusiva - sezione.
20-Ott-141 Riassunto lezione precedente proprietà di SU(N), rappresentazioni fondamentale, regolare, coniugata; operatore di Casimir e classificazione.
21-Nov-131 Riassunto della lezione precedente interazione debole distingue stati di parità diversa: ⇒ nuova struttura antisimmetrica in tensori leptonico.
Il Modello Standard delle Particelle e delle Interazioni
Riassunto lezione precedente
Transcript della presentazione:

22-Nov-121 Riassunto lezione precedente mixing tra stati isoscalari dellottetto (8,1) e del singoletto (1,1) di SU(6); ipotesi di pure mixing rispettata per nonetto vettoriale: | ϕ >|ss>, |ω>|uu,dd>, ma non per nonetto pseudoscalare: da formula di Gell-MannOkubo si deduce che η, η contengono ~20% di (1,1), (8,1) rispettivamente regola di Schwinger per nonetto pseudoscalare (relazione tra masse) è violata di circa 20%: η, η non sono solo combinazioni di (1,1) e (8,1) ipotesi (1,1) w 1 (1,1) + w 2 |cc> ; nuova regola di Schwinger suggerisce che (w 2 ) 2 ~ 75%! pure mixing compatibile con ( ϕ 3π)<<( ϕ KK), ma spazio fasi contraddice regola di OZI -

22-Nov-122 origini dello splitting di massa forza spin-spin S 1 S 2 stati con stessa stranezza e S tot diverso m(π, S=0) m(ρ, S=1); m(K, S=0) m(K*, S=1) m(N, S=½) m(Δ, S=3/2) stati nello stesso multipletto Σ 0 in 56 S (ud+du)s (ud) I =1 S=1 Λ 0 (ud-du)s (ud) I =0 S=0 m(Λ 0 ) m(Σ 0 ) ma splitting dovuto a forza spin-spin produce Δm(3/2 + - ½ + ) = - 3/2 Δm( ) mentre Δm( Δ – N ) = ½ Δm( ρ - π ) ! forza spin-orbita L S attiva per mesoni/barioni eccitati con L>0 mesoni : Δm( ) = 2 Δm( ) non verificato sperimentalmente J PC L S-201 barioni : Δm(10 - 8) = Δm(8 - 1) per forza spin-spin splitting in ciascun multipletto per spin-orbita Ex: (8,4) L=1 S=3/2 Δm(3/2 - - ½ - )= Δm(5/2 - -3/2 - ) non verificato sperimentalmente idem per (8,2) J5/2-3/2-½- 2 L S3-2-5

22-Nov-123 perché il colore dei quark ? motivi spettroscopici abbiamo già visto che forza spin-spin produce splitting 3 S S 0 e 4 S 3/2 - 2 S ½ ma con ampiezza e segno (solo per i barioni) sbagliati in spettroscopia dei barioni abbiamo incontrato nel decupletto (10,4) del multipletto 56 S in stato fondamentale le particelle Δ ++ e Ω - che quindi hanno L=0, S=3/2, I =3/2 Δ ++ ={u u u }, Ω - ={s s s } cioè funz.donda simmetrica |χ S >| ϕ S > ma S=3/2 fermioni! in generale come si conciliano funz.donda [SU(6) O(3)] S per barioni che seguono statistica di Fermi-Dirac e soddisfano principio di Pauli? Y I3I3 motivi dinamici rapporto ma risulta = 2 per s < (m c ) 2 A(π 0 γγ) Σ i I 3 i e i 2 = ma dati suggeriscono ½ adroproduzione di coppie di leptoni (Drell-Yan): dσ(ppμ + μ - X) N c =3

22-Nov-124 perché SU(3) color ? alcune discrepanze precedenti si risolvono immediatamente ipotizzando che ciascun quark di flavor q abbia 3 possibili cariche di colore R, B, G [SU(6) O(3)] S funz.donda di adrone simmetrica per scambio di quark barioni sono fermioni funz.donda antisimmetrica per scambio di gruppi di 3 quark i quark sono parafermioni di ordine 3: (a λ ) = Σ i (a λ(i) ) a λ = Σ i a λ(i) λ = {spin, flavor,..}, i=color {a λ(i), (a μ(i) ) } = δ λμ {(a λ(i) ), (a μ(i) ) } = 0 [a λ(i), (a μ(j) ) ] = 0 ij [(a λ(i) ), (a μ(j) ) ] = 0 ij quindi (f λμν ) = { {(a λ ), (a μ ) }, (a ν ) } = 4 Σ ijk (a λ(i) ) (a μ(j) ) (a ν(k) ) e {(f λμν ), (f αβγ ) } = 0 cioè operatore simmetrico per scambio di quark nella terna (λ,μ,ν), ma antisimmetrico tra diverse terne.

22-Nov-125 uds R u R =+½α+ β d R =u R -1s R =u R -1 B u B =-½α+ β d B =u B -1s B =u B -1 Gu G = -βd G =u G -1s G =u G -1 perché SU(3) color ? (continua) rappr. fondamentale di SU(3) c : ma funz.donda complessiva di barioni [ [SU(6) O(3)] S SU(3) c ] A [SU(3) c ] A i barioni sono in 1 A, cioè i colori sono tutti diversi: barioni = {R, B, G} i quark SU(3) f SU(3) c generalizzazione di Gell-MannNishijima scelta α=β=0 corrisponde a cariche di colore in singoletto di SU(3) c : interazione elettromagnetica color blind

22-Nov A di SU(3) c : colore non osservabile rappresentazioni di possibili configurazioni interne degli adroni: q : 3 qq : qqq : - - quindi barioni = {qqq} e mesoni = {qq} realizzano confinamento; perché? - parallelo con fisica nucleare SU(2) I H I I 1 I 2 D = {np} I =0 {nn}, {pp} I =1 SU(3) c H I F 1F 2 E0E0 E0E0 singoletto stati colorati si rompe lanalogia con la Fisica Nucleare 3 H = { nnp } 3 He = { ppn } 3 He={ pp } 4 He = { ppnn } n = { ddu } p = { uud } = { uds } ??

22-Nov-127 quindi adroni si formano da combinazioni |qqq> e perchè sono le uniche che forniscono stati di singoletto di colore nella simmetria SU(3) c. Ma perchè proprio SU(3) c ? il gruppo di simmetria di colore deve soddisfare ai seguenti requisiti: 1.N c =3 cioè i quark stanno nella rappresentazione di tripletto 3 2.antiquark stanno in rappresentazione 3* e sono diversi da quark 3.mesoni e barioni osservati stanno in stato di singoletto 4.|qq>,, |qqqq>, …. non stanno in stato di singoletto nella classe di gruppi compatti di Lie, solo due scelte non isomorfe: SO(3) e SU(3) ma in SO(3) la rappresentazione di tripletto è reale: 3 = 3 * …. perché SU(3) color ? (ripresa)

carica di π + = = 1 indipendentemente da vincoli su u R, u B, u G. serve solo mesone neutro di colore (RR,.., no RB,..) singoletto di SU(3) c non si vedono mesoni colorati a carica 2 (u G d R ) o barioni a carica 3… 22-Nov-128 SU(3) colore risolve diversi enigmi splitting da forze spin-spin q gluone q & H I F 1F 2 qq = ½ qq q gluone q quindi Δm( 3/2 + - ½ + ) < Δm( ) A(π 0 γγ) A Σ i I 3i e i 2 = ½ (u R 2 +u B 2 +u G 2 ) - ½ ((u R -1) 2 +(u B -1) 2 +(u G -1) 2 ) = ½ rapporto R stati colorati ?