Lo sviluppo delle competenze matematiche nel curricolo verticale

Slides:



Advertisements
Presentazioni simili
Istituto Statale Istruzione Superiore “E U R O P A” Pomigliano d’Arco
Advertisements

Obbligo e Riordino dei Cicli
LABORATORIO LATINO FORMAZIONE
OBBLIGO SCOLASTICO ASSI CULTURALI.
Raccomandazione del Parlamento europeo e del Consiglio (18 settembre 2006) Conoscenze: assimilazione delle informazioni attraverso l’apprendimento. l’insieme.
Dagli obiettivi alle competenze
Il quadro di riferimento di matematica: INVALSI e TIMSS a confronto
Adempimento dell’obbligo d’istruzione (D.M. n°139 del 22/08/2007)
Asse dei linguaggi Comunicazione nella madrelingua
Progetto Cartesio – M&R Percorso A – Riferimenti e Codici del quotidiano e Rappresentazione grafica della realtà A.S Classi e docenti partecipanti:
Due esempi di valutazione per competenze nella matematica.
CURRICOLO D’ISTITUTO IPOTESI DI LAVORO ZELO BUON PERSICO.
Quadro di riferimento INValSI Scienze I livelli di competenza
COMPETENZE: CERTIFICAZIONE e...
1 Le competenze di base dell'asse matematico Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma.
Obbligo d’istruzione L’Asse matematico Donatella MARTINI
Asse Matematico 29 Marzo L'ASSE MATEMATICO.
Attività di tutoraggio sulle simmetrie
La costruzione e lo sviluppo delle competenze a scuola
L’indagine OCSE-PISA: il framework e i risultati per la matematica
INDICAZIONI PER IL CURRICOLO (strumento di lavoro)
una bella avventura culturale
Quadri di Riferimento per la Matematica
Qualcosa cambia nella scuola ?
Struttura logica del curricolo tra obiettivi, competenze e finalità
Carlo Gioria Pavia, Mercoledì 23 Novembre L A CERTIFICAZIONE DELL OBBLIGO : F ORMAT 2.
PON-FSE IT 05 1 PO007 – Competenze per lo sviluppo Annualita ̀ 2013/ tel. : 0963/ /41805.
Istituto Comprensivo “Della Robbia” - APPIGNANO
DIDATTICA PER COMPETENZE
Le indagini internazionali e la valutazione delle competenze
Dino Cristanini PROGETTO DI FORMAZIONE E DI RICERCA AZIONE
PIANO DI INFORMAZIONE E FORMAZIONE SULLINDAGINE OCSE-PISA E ALTRE RICERCHE NAZIONALI E INTERNAZIONALI PIANO DI INFORMAZIONE E FORMAZIONE SULLINDAGINE OCSE-PISA.
Servizio Nazionale di Valutazione: il mandato Art. 1, c. 5, Legge 25 ottobre 2007, n. 176: dallanno scolastico 2007/08 il Ministro della Pubblica Istruzione.
Riferimenti normativi: Decreto 22 agosto 2007 n Allegati
Obbligo formativo a 16 anni
CONFRONTO TRA QUADRI DI RIFERIMENTO.
Competenze nel Biennio Unitario Una breve presentazione.
DIDATTICA LABORATORIALE
Progetto di Laboratorio AREA A RISCHIO “MATEMATICA …IN GIOCO”
IL PROGETTO DESECO SAPERE CONTESTO INTEGRAZIONE COMPETENZA
1 Nuovo Obbligo Scolastico: Gli Assi Culturali. 2 Asse dei Linguaggi Asse Matematico Asse Scientifico-Tecnologico Asse Storico Sociale.
OBBLIGO SCOLASTICO: UNA SFIDA? ASSE MATEMATICO. Il nuovo obbligo scolastico come opportunità Opportunità per cosa? Opportunità per chi?
Problem Solving: capacità di risolvere problemi
Didattica per competenze secondo le Nuove Indicazioni Nazionali.
PROGRAMMARE PER COMPETENZE
ROVIGO 29 – 30 settembre 2014 Elaborazione di Simulazioni di Seconde Prove relative agli Esami di Stato a conclusione del primo quinquennio.
SPIRITO DI INIZIATIVA E IMPRENDITORIALITÀ
Gruppo del Progetto Coordinatore Referente Prof.ssa Sonia Spagnuolo Docenti Partecipanti Concetta Zecca Giuseppe Ruscelli Elisa Santagada Anna Caterina.
PERCORSO EDUCATIVO E DIDATTICO
Finalità generale della scuola: sviluppo armonico e integrale della persona all’interno dei principi della Costituzione italiana e della tradizione culturale.
Progettare attività didattiche per competenze
D.D. Bussoleno (To) VIAGGIO VERSO IL CURRICOLO Temevo il mio ritorno tanto quanto avevo temuto la mia partenza; entrambi appartenevano all’ignoto e all’imprevisto.
Grottaferrata 24 marzo 2015 Esami di Stato a conclusione del primo quinquennio di applicazione delle Indicazioni Nazionali Gestire il cambiamento.
Come impostare il curricolo
 INVALSI   Sviluppato da: Organizzazione per la Cooperazione e lo Sviluppo Economico (OECD – OCDE – OCSE)  PISA-Programme for International.
Esempi del profilo d’uscita declinato secondo gli Assi culturali
La Raccomandazione del Parlamento Europeo e del Consiglio del
Conoscenze, abilità, competenze
Multicentro Educativo del Comune di Modena 16 settembre 2014 Nicolina A. Malara Università di Modena e Reggio Emilia Aspetti linguistici e di rappresentazione.
Alcuni spunti di riflessione sulla didattica della matematica.
LA BUSSOLA ORIZZONTE DI SENSO QUALE PERSONA QUALE ALUNNO/BAMBINO QUALE INSEGNANTE QUALE SCUOLA QUALE METODOLOGIA QUALE SAPERE QUALE APPRENDIMENTO.
Sistema di Riferimento Veneto per la Sicurezza nelle Scuole
Scuola delle competenze, alleanza educativa tra genitori e insegnanti Prof.ssa Floriana Falcinelli.
V CIRCOLO DIDATTICO DI GIUGLIANO IN CAMPANIA (NA)
IL CURRICOLO PER COMPETENZE SECONDO LE NUOVE INDICAZIONI 2012
UN TENTATIVO DI DEFINIZIONE INTEGRATO
Il quadro di riferimento delinea 8 competenze chiave e descrive le conoscenze, le abilità e le attitudini essenziali ad esse collegate Il quadro di riferimento.
Quadro di Riferimento INVALSI: elementi di confronto e continuità fra ordini di scuola.
DALLA TEORIA ALLA PRATICA
COMPETENZE DI CITTADINANZA SCUOLA SECONDARIA DI I GRADO
Transcript della presentazione:

Lo sviluppo delle competenze matematiche nel curricolo verticale Giuseppina Crivelli PROGETTO “INDICAZIONI NAZIONALI – COMPETENZE DI BASE” Mortara, 25 marzo 2015

Obiettivi del percorso di formazione e ricerca Coordinare gli interventi educativi nella fascia di età compresa tra i 3 e i 16 anni all’interno di un curricolo verticale condiviso a livello territoriale. Migliorare le attività di orientamento per ridurre la discontinuità nel passaggio tra i diversi ordini di scuola (...) Ridurre il tasso di dispersione relativo sia alla scuola secondaria di secondo grado sia a quella di primo grado. Favorire il confronto tra docenti appartenenti agli stessi “assi culturali” ma appartenenti a diversi ordini di scuola. Valorizzare e promuovere la metodologia della ricerca-azione nella costruzione dei curricoli per competenze.

Struttura dei laboratori di formazione-ricerca Individuazione dei macrotemi essenziali in ciascuna disciplina (italiano, matematica, scienze) necessari alla prosecuzione degli studi nei tre segmenti del curricolo. Acquisizione di competenze attraverso l’utilizzo della didattica laboratoriale e l’ausilio delle nuove tecnologie. Produzione di materiali (modelli di curricoli verticali per le tre discipline, qualche esempio di unità didattica di raccordo, potenziamento delle azioni di orientamento in tutti gli snodi).

Raccomandazioni del Parlamento europeo Prove di valutazione OCSE-PISA Destrutturazione dei programmi tradizionali Programmare per competenze Curricolo UMI Prove INVALSI Programmi della scuola italiana Piano M@t.abel

Le sollecitazioni al cambiamento. Dalle conclusioni della Presidenza del Consiglio europeo di Lisbona (23-24 marzo 2000): “[...] I sistemi europei di istruzione e formazione devono essere adeguati alle esigenze della società dei saperi e alla necessità di migliorare il livello e la qualità dell'occupazione. [...] Un quadro europeo dovrebbe definire le nuove competenze di base da fornire lungo tutto l'arco della vita: competenze in materia di tecnologie dell'informazione, lingue straniere, cultura tecnologica, imprenditorialità e competenze sociali [...]”

Competenze chiave per l’apprendimento permanente. La comunicazione nella madrelingua. La comunicazione in lingue straniere. La competenza matematica e le competenze di base in campo scientifico e tecnologico. La competenza digitale. Imparare ad imparare. Le competenze sociali e civiche. Senso di iniziativa e di imprenditorialità. Consapevolezza ed espressione culturali.

Competenza matematica e competenze di base in campo scientifico e tecnologico. La competenza matematica è l’abilità di sviluppare e applicare il pensiero matematico per risolvere una serie di problemi in situazioni quotidiane, ponendo l’accento sugli aspetti del processo, dell’attività e della conoscenza. Le competenze di base in campo scientifico e tecnologico riguardano la padronanza, l’uso e l’applicazione di conoscenze e metodologie che spiegano il mondo naturale. Tali competenze comportano la comprensione dei cambiamenti determinati dall’attività umana e la consapevolezza della responsabilità di ciascun cittadino.

Conoscenze Competenze Abilità Disposizioni interne stabili

Competenza matematica in OCSE-PISA. Per competenza matematica si intende la capacità di un individuo di utilizzare e interpretare la matematica, di darne rappresentazione mediante formule, in una varietà di contesti. Tale competenza comprende la capacità di ragionare in modo matematico e di utilizzare concetti, procedure, dati e strumenti di carattere matematico per descrivere, spiegare e prevedere fenomeni. Aiuta gli individui a riconoscere il ruolo che la matematica gioca nel mondo, a operare valutazioni e a prendere decisioni fondate che consentano loro di essere cittadini impegnati, riflessivi e con un ruolo costruttivo.

OCSE-PISA Per ciascun ambito disciplinare è stato messo a punto un quadro di riferimento che ne definisce i contenuti, i processi cognitivi e i contesti problematici, fornendo il quadro teorico per la costruzione delle prove.

Problem solving in OCSE-PISA. Per problem solving si intende la capacità di un individuo di mettere in atto processi cognitivi per comprendere e risolvere situazioni problematiche per le quali il percorso di soluzione non è immediatamente evidente. Questa competenza comprende la volontà di confrontarsi con tali situazioni al fine di realizzare le proprie potenzialità in quanto cittadini riflessivi e con un ruolo costruttivo.

8 competenze matematiche. (PISA 2003) Pensiero e ragionamento. Argomentazione. Comunicazione. Modellizzazione. Formulazione e risoluzione di problemi. Rappresentazione. Uso del linguaggio simbolico, formale e tecnico e delle operazioni. Uso di sussidi e strumenti.

Raggruppamenti di competenze. (PISA 2003) Diagramma dei raggruppamenti di competenze Competenza matematica Raggruppamento della riproduzione Raggruppamento delle connessioni della riflessione Rappresentazioni e definizioni standard. Calcoli di routine. Procedure di routine. Analisi e soluzione di problemi di routine. Modellizzazione. Analisi e soluzione di problemi standard, traduzione e interpretazione. Uso di molteplici metodi ben definiti. Formulazione, analisi e soluzione di problemi complessi. Riflessione e intuizione. Approccio matematico creativo. Uso di molteplici metodi complessi. Generalizzazione.

Livelli di competenza OCSE-PISA. (Matematica)

Prove INVALSI (2013) Le domande di matematica sono costruite in relazione a due dimensioni: i contenuti matematici coinvolti, organizzati nei quattro ambiti: Numeri, Spazio e figure, Dati e previsioni, Relazioni e funzioni; i processi coinvolti nella risoluzione.

Prove INVALSI (2013) I processi utilizzati per costruire le domande e analizzare i risultati sono i seguenti: conoscere e padroneggiare i contenuti specifici della matematica; conoscere e utilizzare algoritmi e procedure; conoscere diverse forme di rappresentazione e passare da una all'altra; risolvere problemi utilizzando strategie in ambiti diversi (numerico, geometrico, algebrico); riconoscere in contesti diversi il carattere misurabile di oggetti e fenomeni, utilizzare strumenti di misura, misurare grandezze, stimare misure di grandezze; acquisire progressivamente forme tipiche del pensiero matematico (congetturare, argomentare, verificare, definire, generalizzare, ...); utilizzare strumenti, modelli e rappresentazioni nel trattamento quantitativo dell'informazione in ambito scientifico, tecnologico, economico e sociale; riconoscere le forme nello spazio e utilizzarle per la risoluzione di problemi geometrici o di modellizzazione.

Indicazioni per la scuola dell’infanzia

Assi culturali Matematica

24

I nuclei per scuola primaria e secondaria di 1° grado. nuclei tematici: il numero lo spazio e le figure le relazioni i dati e le previsioni nuclei di processo: misurare argomentare e congetturare risolvere e porsi problemi 26

Contenuti, contesti, processi. Tutte le attività propongono un insegnamento-apprendimento della matematica in cui sono intrecciati tre aspetti fondamentali: i contenuti disciplinari (conoscenze); le situazioni (i contesti) in cui i problemi sono posti, che vengono utilizzati come sorgenti di stimoli materiali per gli allievi; i processi (le competenze) che l’allievo deve attivare per collegare la situazione problematica affrontata con i contenuti matematici da veicolare.

DAL LINGUAGGIO NATURALE AL LINGUAGGIO MATEMATICO Daniela De Balsi Gabriella Elli

Dal linguaggio naturale al linguaggio matematico Nucleo Relazioni e funzioni: “ Il numero di ferro” “ Mettiamo in equilibrio” L’ attività viene svolta all’inizio dell’anno scolastico in una classe terza , Il contesto di riferimento è il campo scientifico - tecnologico Una competenza fondamentale che si dovrebbe acquisire attraverso lo studio della matematica è quella di costruire modelli che permettano di interpretare la realtà, cogliendo regolarità, differenze e analogie. 

Griglia di analisi dell’attività. CONOSCENZE COMPETENZE INDICAZIONI NAZIONALI Tabulazione Relazioni tra grandezze Proporzionalità diretta e inversa Relazione P,V,ps Rappresentazione grafica di una funzione Individuare, in un’esperienza laboratoriale ,regolarità , differenze e analogie Modellizzare una situazione concreta con la relazione di proporzionalità diretta e inversa Passare dal linguaggio aritmetico a quello geometrico Produrre congetture relative all’interpretazione e spiegazione di osservazioni effettuate in diversi contesti. Analizzare le proprie congetture, verificarne la validità Costruire ,interpretare e trasformare formule che contengono lettere per esprimere in forma generale relazioni e proprietà Esprimere la relazione di proporzionalità con una uguaglianza di frazioni e viceversa Usare il piano cartesiano per rappresentare relazioni e funzioni, per conoscere in particolare le funzioni del tipo y=ax, y=a/x Collegare y=ax, y=a/x al concetto di proporzionalità

Lezione 1. Relazione tra il numero di cilindretti (dello stesso materiale) e il loro peso. MATERIALE: cilindri di uguale volume di acciaio dinamometro Tabella 1 carta millimetrata ____________________________  Determinazione dei pesi di uno e più cilindri con il dinamometro Preparazione della tabella 1 e compilazione Considerazioni sui dati ottenuti: riconoscimento della variabile dipendente e indipendente Preparazione del grafico su carta millimetrata Numero cilindri Peso 1 50 2 100 3 … Tab. 1

Relazione tra il peso e il volume di oggetti dello stesso materiale. Lezione 2. Relazione tra il peso e il volume di oggetti dello stesso materiale. MATERIALE: cilindri di uguale volume di acciaio dinamometro Tabella 2 Cilindro graduato, contenente acqua carta millimetrata ___________________________________________________________________________________________________________________________________ Determinazione dei pesi di uno e più cilindri con il Determinazione del volume sperimentalmente Preparazione della tabella 2 e compilazione Considerazioni sui dati ottenuti: riconoscimento della variabile dipendente e indipendente Preparazione del grafico su carta millimetrata. Numero cilindretti Volume (cm3) Peso (g) 1 6,5 50 2 13 100 3 …. 150 4 200 ….. ……. 250 Tab. 2

Riflessioni sulle tabelle. Osservando le tabelle, si chiederà agli alunni: All'aumentare della variabile indipendente, come varia la variabile dipendente? Ad esempio: Se il volume raddoppia, come cambia il peso? Se il volume dimezza, come cambia il peso? Se il volume triplica, come cambia il peso? Se il volume diventa un terzo, come cambia il peso? Si fa osservare agli alunni che le grandezze crescono secondo lo stesso fattore moltiplicativo   Dalla discussione guidata dovrebbe emergere a questo punto l’osservazione: y/x = costante 33

Calcoliamo i valori delle costanti. Numero cilindri Peso P/n° 1 2 3 … Riprendendo la tabella 1 si farà calcolare il valore della costante: peso/ numero di cilindretti. Questa costante rappresenta il peso unitario di un cilindretto. Numero cilindri Volume peso P/V = ps Riprendendo la tabella 2 si farà calcolare il valore della costante: peso / volume. Questa costante rappresenta il peso specifico.

Lezione 3. Approfondimenti: verifica del ps di oggetti di materiale differente, Principio di Archimede, leggi del moto rettilineo uniforme , L = F · s

Lezione 4. Leve di 1° genere. MATERIALE: cilindri di uguale volume di acciaio Leva di primo genere Tabella 3 carta millimetrata ____________________________ Proponiamo agli alunni di appendere un certo numero di cilindretti ad una certa tacca, ad esempio due cilindretti alla sesta tacca della parte 1. Tale situazione si terrà fissa e non si potrà modificare fino a che l’esperienza non si conclude.  Si pone agli alunni il seguente quesito: Quanti cilindretti dobbiamo appendere alla sesta tacca della parte 2 affinché la leva sia in equilibrio? Leve di 1° genere.

tacca  numero cilindretti = 12 Si chiederà agli alunni di verificare l’equilibrio della leva variando i cilindretti appesi nella parte 2. Dalla discussione guidata dovrebbe emergere a questo punto l’osservazione: tacca  numero cilindretti = 12 Preparazione della tabella 3 e compilazione. Considerazioni sui dati ottenuti: riconoscimento della variabile dipendente e indipendente. Preparazione di un grafico su carta millimetrata.   tacca numero cilindretti 1 12 2 6 3 4 5 7 8 Tab.3

Lezione 5. tacche grammi 1 240 2 120 3 80 4 60 5 -- 6 40 7 Determinazione del peso di un cilindretto in grammi utilizzando un dinamometro (supponiamo che sia 20 g) Preparazione e compilazione della tabella 4 e del relativo grafico. Dalla discussione guidata dovrebbe emergere a questo punto l’osservazione: tacca x peso = 240 Confronto fra le due tabelle e relativi grafici. Riconoscimento della costante. Formulazione della legge: xy = costante Tab. 4

Osservazione. tacche grammi 1 240 2 120 3 80 4 60 5 -- 6 40 7 Come completare la tabella in corrispondenza della tacca numero 5 o numero 7? Si propone di sostituire i cilindretti massicci con un cilindro cavo che può essere riempito con sabbia o riso e quindi pesato con il dinamometro. In questo modo si possono trovare valori corrispondenti a ogni tacca e dare un significato anche ai valori intermedi del grafico. Naturalmente, operando sperimentalmente, bisogna accontentarsi di valori approssimati per le misure.

Antonella Ambrosioni Barbara Vettorello STIMA E MISURA: un percorso per la classe III della scuola secondaria di I grado. Antonella Ambrosioni Barbara Vettorello

COMPETENZE da raggiungere: dare stime sempre più ragionevoli di grandezze; determinare misure di grandezze geometriche; riconoscere, utilizzare semplici funzioni e rappresentarle; congetturare e argomentare; modellizzare una situazione geometrica.

Quanti siamo in palestra alla festa di fine anno? Obiettivi: individuare la scala di una piantina; stimare, misurare, approssimare misure di grandezze; riconoscere la media aritmetica come strumento significativo per la manipolazione di dati quantitativi; calcolare l’area di figure piane scomponendole in figure elementari.

Scheda operativa Si decide di organizzare in palestra una festa di fine anno; gli alunni e gli insegnanti possono stare seduti solo in una metà del “campo rosso”, perché l’altra è occupata da ballerini e cantanti. Stimate quante persone al massimo possono stare comodamente sedute. Immagine del campo

Gli studenti all’opera … dimostrano di privilegiare l’uso di formule a scapito del ragionamento; perdono il senso della realtà (palestra quadrata, scala 1:2, densità di persone sottostimata, …); sono incapaci di usare la teoria nella pratica (approssimazione).

Misurare il cerchio Obiettivi: stimare, misurare, approssimare misure di grandezze; individuare relazioni di proporzionalità diretta fra grandezze e rappresentarle; riconoscere la media aritmetica come strumento significativo per la manipolazione di dati quantitativi; conoscere il numero pi greco.

Scheda operativa Dopo aver realizzato i rilievi di diametro e circonferenza delle basi dei cilindri a disposizione, rispondete ai seguenti quesiti: I segmenti ottenuti facendo rotolare i cilindri sono tra loro ………………………………………………… e perpendicolari all’………………………………………………… Cosa ottenete congiungendo le estremità dei segmenti? Che legame esiste tra diametro e circonferenza ?

Verifica e valutazione. Strutturare una verifica scritta per una parte del percorso specificando i livelli di competenze che si intendono valutare. Per esempio da Il progetto M@t.abel pag.14 : “Tali processi possono essere considerati a livelli diversi di approfondimento, ad esempio OCSE-PISA considera tre raggruppamenti in ordine crescente di complessità: Riproduzione: essere in grado di applicare algoritmi standard, riprodurre procedure di routine, risolvere problemi famigliari. Connessione: essere in grado di stabilire relazioni fra i vari ambiti di una disciplina, risolvere problemi utilizzando processi che uniscano diversi metodi di rappresentazione e comunicazione, elaborare comunicazioni per esporre i propri risultati. Riflessione: essere in grado di selezionare, comparare e valutare strategie appropriate per risolvere problemi, collegare rappresentazioni formali a situazioni del mondo reale, argomentare e giustificare i risultati ottenuti.”

Tavole degli apprendimenti

Secondaria primo grado Secondaria secondo grado – primo biennio Secondaria secondo grado – quinto anno liceo scientifico