Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
1 LABORATORI NAZIONALI DI FRASCATI www.lnf.infn.it
2
PIM obiettivi & WPs anagrafica nazionale sinergie internazionali PIM @ LNF PIM @ LNF coinvolgimento LNF nei WPs anagrafica LNF richieste servizi richieste finanziarie 2
3
MicroPattern Gas Detectors (MPGD) ideal tools fundamental research usage in LHC experiments, C-GEM IT for KLOEapplications beyond HEP. MicroPattern Gas Detectors (MPGD) are ideal tools for fundamental research contributing to the excellence in science, as demonstrated, for instance, by their usage in LHC experiments, as well as in our lab (C-GEM IT for KLOE), and for applications beyond HEP. efforts towards moreadvanced MPGDs high-performancehigh reliability simplified construction procedures In spite of the relevant progress registered during the last years, in the framework of RD51, further efforts towards more advanced MPGDs characterized by high-performance, high reliability and simplified construction procedures is ongoing. wide expertise and dedicated infrastructuresin particular in Frascati where the MPGDs have been introduced since 2000, pursue relevant achievements. In this context, the wide expertise and dedicated infrastructures available within INFN, and in particular in Frascati where the MPGDs have been introduced since 2000, are fully adequate to pursue relevant achievements. 3
4
three-year project Progress In MPGDs (PIM) key issuesthe development of MPGDs, relevant steps forward respect to the present state-of-the-art: The GOAL of the three-year project denominated Progress In MPGDs (PIM) is to establish key issues in the development of MPGDs, resulting in relevant steps forward respect to the present state-of-the-art: novel MPGD architectures develop novel MPGD architectures with complementary features and outstanding characteristics; MPGD-dedicated read-out FE electronics develop MPGD-dedicated read-out FE electronics with diversified characteristics in order to match specific requirements in the sector; technological tools developments; MPGD technological tools developments; implementation of specific MPGDs in applications beyond HEP neutron detection and in the medical sector. the implementation of specific MPGDs in applications beyond HEP : such as in the neutron detection and in the medical sector. Obiettivi & WPs 4
5
Progress In MPGDs (PIM) - proposal for the Call of INFN CSN V WPtitletasktask title 1Novel MPGD Architectures1,1R-WGEM 1,2Multi μgap Resistive WELL 1,3high performance MICROMEGAS 1,4high-gain hybrid MPGD 2MPGD-dedicated FE2,1MPGD digital FEE 2,2Fast high-density analog MPGD FEE 3 MPGD-dedicated technological developments3,1 Deformation monitoring of MPGD films/meshes 3,2high-performance eco-friendly gas mix. 4MPGD applications beyond HEP4,1 beam monitoring for medical applications 4,2fast and termal neutron detection Struttura Progetto: WPs, tasks 5
6
PI: S. Dalla Torre, INFN – Trieste PI: S. Dalla Torre, INFN – Trieste WP leaders(WP1) G. Bencivenni, INFN – LNF WP leaders: (WP1) G. Bencivenni, INFN – LNF (WP2) A. Ranieri, INFN – Bari (WP2) A. Ranieri, INFN – Bari (WP3) S. Bianco, INFN – LNF (WP3) S. Bianco, INFN – LNF (WP4) F. Murtas, INFN – LNF (WP4) F. Murtas, INFN – LNF PIM Management 6
7
INFN unitUnit CoordinatorComponentsFTEWork Packages (WP) 1BariRanieri Antonio81.9WP1, WP2 2BolognaGiacomelli Paolo50.9WP3 3LNFBencivenni Giovanni164.2WP1, WP2, WP3, WP4 4Mi-BicoccaGorini Giuseppe82.5WP2, WP4 5NapoliDella Pietra Massimo71.3WP1, WP3 6PaviaRiccardi Cristina61.5WP4 7Roma 3Iodice Mauro30.5WP1 8TriesteDalla Torre Silvia61.2WP1 Roma 1 (personal part.) Pinci Davide10.1WP3 Total6014.1 Anagrafica PIM-Italia 7
8
RD51: RD51: CERN based International Collaboration for the development of MPGD technologies and associated electronic- readout systems, for applications in basic and applied research. (5 among the 9 research units participating in PIM are RD51 members; 2 PIM leaders are in the MB of RD51); CNAO: CNAO: Centro Nazionale Adroterapia Oncologica per il trattamento dei tumori con fasci adronici di protoni e ioni carbonio. L’attività del WP4.1, che prevede la realizzazione di un monitor dei fasci con GEM equipaggiate con Medipix, verrà svolta nel framework di una stretta collaborazione con il CNAO. Policlinico Tor Vergata: Policlinico Tor Vergata: collaborazione avviata già da tre anni per la realizzazione di un monitor di fasci gamma per terapia anti- tumorale basato sul GEMPIX. 8
9
PIM @ LNF Coordinamento di WP1,WP3 e WP4 Coordinamento di WP1,WP3 e WP4 Coinvolgimento diretto con leadership Coinvolgimento diretto nelle attività dei tasks (con leadership): WP1.1: WP1.1: Development of Resistive WELL GEM detector WP3.1: WP3.1: Deformation monitoring of MPGD films/meshes WP3.2: WP3.2: High-performance eco-friendly gas mixtures WP4.2: WP4.2: Fast & Thermal Neutron detection Collaborazionesenza leadership Collaborazione nelle attività dei tasks (senza leadership): WP2.1: WP2.1: MPGD digital FEE (10% LNF – leadership Mi-Bicocca) WP2.2: WP2.2: Fast high-density analog MPGD FEE (10%LNF – lead. Bari) 9
10
WP1.1 Resistive WELL GEM detector (I) R-WGEMnuova idea di MPGD sintesi della tecnologia GEM e MM. R-WGEM è una nuova idea di MPGD che nasce dalla sintesi della tecnologia dei maggiori MPGDs attualmente esistenti e più diffusi, GEM e MM. compatto, a singolo stadio di amplificazione (G~10 4 ) Rivelatore compatto, a singolo stadio di amplificazione (G~10 4 ) «embedded» con il readout resistivo (opportunamente segmentato a seconda delle esigenze): il tutto in un unico PCB (che può essere anche su tecnologia flex). catodo - oltre al PCB - completa il rivelatore semplice da assemblare «cost-effective». Ridotto nei componenti, un catodo - oltre al PCB - completa il rivelatore, R-WGEM è semplice da assemblare (no stretching – no gluing) e «cost-effective». resistivo al RO lo rende altamente affidabile «discharge-free», O(1MHz/cm 2 ), «segmented-resistive-layer». L’uso dell’accoppiamento resistivo al RO lo rende altamente affidabile, praticamente «discharge-free», per impieghi a flussi di particelle comunque molto elevati, O(1MHz/cm 2 ), grazie all’introduzione del concetto di «segmented-resistive-layer». tracciamento in campo magnetico su apparati di grande area e per calorimetria digitale in HEP e altre applicazioni (X-ray imaging e neutron detection). La compattezza e le prestazioni attese lo rendono adatto per tracciamento in campo magnetico su apparati di grande area e per calorimetria digitale in HEP e altre applicazioni (X-ray imaging e neutron detection). 10
11
WP1.1 Resistive WELL GEM detector (II) Optimization of detector parameters value of surface resistivity VS gain, rate capability, charge spread, discharge rate study & implementation of the resistive layer segmentation VS rate capability WELL geometry (pitch, diameter, depth) VS gain aging studies classical aging & aging of the resistive layer under irradiation Optimization readout segmentation pixel/strips pitch VS resistive layer configuration (surface resistivity & segmentation) study of bump-bonding technique for the pixel-fee coupling Detector engineering Detector engineering VS applications (large area tracking/tile calo/imaging) 11
12
WP3.1 Deformation monitoring of MPGD films/meshes (I) Characterize tensile propertiesmaterials pre- and post- irradiation. Characterize tensile properties of materials pre- and post- irradiation. Ronchi grating (*) LHCb-GEM group studies have set mechanical precision in gap dimension and uniformity at +-10% (+-100um for 1mm-gap), corresponding to 6% gain variation. Poli-Lener (Frascati) phD Thesis; Poli-Lener (Frascati) phD Thesis; G.Bencivenni http://indico.cern.ch/getFile.py/access?contribId=2&resId=1&materialId=slides&confId=50797 simple, cost-effective tool to asses GEM foils planarity and parallelism within <100µm (*) Moire`interferometry. Interference patterns assure flatness and uniformity 20-30µm precision Develop a simple, cost-effective, mass production tool to asses GEM foils planarity and parallelism within <100µm (*) over the 1mm gap performed via Moire`interferometry. Interference patterns assure flatness and uniformity in the plan orthogonal to the foil up to 20-30µm precision. 12
13
in situ monitoring of stretching Fiber Bragg Grating (FBG) optical sensors Develop an in situ monitoring of stretching with Fiber Bragg Grating (FBG) optical sensors. WP3.1 Deformation monitoring of MPGD films/meshes (II) Fibre Bragg Grating (FBG) sensor: Diffraction grating written inside the core of an optical fibre. Grating is made by modifying the refraction index of a segment of the optical fibre. Light propagating along the fiber is diffracted and reflected by the grating, that it’s designed to produce a narrow-band back-reflected signal. Pulling or compressing the fiber changes grating pitch Pulling or compressing the fiber changes grating pitch frequency of back-reflected light micron accuracy expected 13
14
moleculeslower GWP/ODP Test molecules similar to banned F-based but with lower GWP/ODP (e.g. 3,3,3-tetrafluoropropene; 1,3,3,3-tetrafluoropropene, trifluoroiodo-methane etc …) gas compatibility with MPGD and i-MPGD materials Test gas compatibility with MPGD and i-MPGD materials Measuredetector response parameters Measure all the detector response parameters Ecofriend ly low GWP ODP Compatible with MPGD materials, under discharge, in high-rad Physics Performance Tune readout electronics Candidate mix test at irradiation facilities 14
15
GEM detectors for neutron detection have been developed in the last 5 years at LNF N-TOF beam spot N-TOF beam energy profile Thermal Neutron The detectors show good performance in time resolution (3 ns), gamma rejection (10 5 ), high rate capability (O(10MHz/cm 2 ) of converted neutron). They are good candidate for the 3 He detector replacement in the Neutron Spallation Source facility ISIS, ESS, SNS. Recently the a thermal neutron beam spot was measured with 1 mm resolution. We propose an R&D program working especially on the cathode (Boron and Lithium deposition – w/efficiency up to 30% or more) increasing the efficiency of the detector, the spatial resolution, and the total sensitive area. 15
16
The fast neutron are detected through the proton produced in the polyethylene interaction N-TOF beam energy profile The efficiency is low (10 -3 ) but enough for the applications in high intensity beam We propose an R&D program working specially on the cathode (PE and PP) increasing the efficiency of the detector, the spatial resolution, and the total sensitive area ISIS beam 2 D spot Real time Neutron flux Vs Proton beam time structure (100 ns scan) Large area prototypes build in Frascati in May and in test in July at ISIS (England) Spider facility at RFX Neutron chamber for SPIDER detector
17
17 WP2.1 MPGD digital FEE (for non HEP applications) Refers to binary readout devices Refers to binary readout devices Preamplifier + Shaper + Discriminator + Output Serializer (generally LVDS output drivers) N. chs 32 or 64 - 65 nm technology N. chs 32 or 64 - 65 nm technology Max single channel input rate depends on shaping time and the acceptable pile-up probability Manages low input capacitances (from few up to 40 pF) Manages low input capacitances (from few up to 40 pF) Include a global OR for self-triggering capability WP2.2 Fast high-density analog MPGD FEE (for HEP applications) Refers to analog readout devices Refers to analog readout devices charge and time more complex processing chain (charge and time measurement) N. chs 128 - 110 nm technology N. chs 128 - 110 nm technology Max single channel input rate depends on shaping time and the acceptable pile- up probability Manages high input capacitances (50 – 100 pF) Manages high input capacitances (50 – 100 pF) Include a global OR for self-triggering capability (not required for HEP applications) Include an output pipeline (trigger latency)
18
WP2.2 ASIC BLOCK DIAGRAM Cdet ≈ 50 ÷ 100 pF Shaping Time ≈ 100 ns Shaping Time ≈ 25 ÷ 50 ns FADC 40 MHz – 6 bits TDC 1 ns Pipeline depth ≈ 161 word OR output (Self Trigger) 64 channels PD ≈ 10 ÷ 15 mW/ch Radiation tolerant technology: 180 nm (less expensive) ÷ 110 nm (higher density)
19
19 WP2.1: The electronics used up to now for the readout of the MPGDs derive from silicon detector or wire chambers. We propose the design and construction of a new ASIC with 32 or 64 channels derived by a chip GEMINI developed in the Beam4Fusion experiment, dedicated to MPGDs. The chip is a multi-purpose FEE able to readout pads from few up to 40 pF, with high rate capability up to 5 MHz per channel without triggers. The ASIC is designed to measure the rate and the signal time with a resolution of 3ns. The project is coordinated by Milano Bicocca (A. Baschirotto).
20
Nominativoposizione% PIM % G1 ECRD 51 1BENCIVENNI G.Primo Ricercatore3070YY 2FELICI G.Dirigente Tecnologo1090YY 3DOMENICI D.Ricercatore TD1090YY 4MORELLO G.Assegnista Ricerca3070Y 5DE SIMONE P.Primo Ricercatore1090 6BENUSSI L.Ricercatore2080Y 7BIANCO S.Primo Ricercatore2080Y 8CAPONERO M.Primo Ricercatore2050Y 9SAVIANO G.Ricercatore Univ.2070Y 10FERRINI M.Ricercatore Univ.3070 11PARVIS M.Prof. Ordinario4060 12RAFFONE G.Primo Ricercatore1040Y 13PIETROPAOLO A.Ricercatore ENEA50 14CLAPS G.Dottorando4030 15QUINTIERI L.Ricercatore ENEA50 16MURTAS F.Primo Ricercatore3050Y Tot 4.2 FTE 20
21
spas (m.u.) sscr (m.u) sea (m.u.) wp1.1122 prog. mecc.RWGEMcostr. mecc. RWGEMprog. PCB rivel wp3.1211 prog. mecc. Moiremecc. MoireSW di movim. wp3.2 wp4.211 prog. mecc. riv. neutroni real. mecc. riv neutroni wp2.1 5.5 specif. prog. ASIC1 & test chip, GEMBoard wp2.2 1 specif. prog. ASIC2 & test chip totali449.5 x DDG: 12 m.u. di supporto-tecnico-agli-esperimenti/FAI/??? 4/4/4 = PIM/LHCb-GEM/SHIP x DDG: 12 m.u. di supporto-tecnico-agli-esperimenti/FAI/??? 4/4/4 = PIM/LHCb-GEM/SHIP 21
22
Money Matrix di PIM (preliminary) La durata dell’esperimento è di tre anni. La durata dell’esperimento è di tre anni. Parte di LNF-PIM sta anche partecipando ad AIDA2020 con richieste finanziarie di ~ 90 k€, sostanzialmente da dedicare a contratti per personale TD. Parte di LNF-PIM sta anche partecipando ad AIDA2020 con richieste finanziarie di ~ 90 k€, sostanzialmente da dedicare a contratti per personale TD. 22
23
23 Spare slides
24
Gempix inside the water phantom We propose an intense program for the development of diagnostic instrumentation for the daily quality checks and dosimetry measurements also for the 4 th line of CNAO 3D reconstruction of bragg peak Few beam tests were performed at CNAO in the framework of ARDENT project A new triple GEM detector with high density pixel readout has been made. 5x10 8 Carbon ions per 10 spills
25
Gamma flux of 10 8 Hrz/cm 2 6-1 MeV Gamma radiotherapy Policlinico Tor Vergata The flux of gamma in radiotherapy is composed by several 3 ms bunches With a scan, a triple GEM with a row of 128 pad of 0.5x0.5 mm is moved crossing the beam. Each line is aquired in 200 ms Gamma flux measurements at PTV Gamma radiotherapy Policlinico Tor Vergata
26
BINARY READOUT Identify clusters by detecting adjacent strips with a collected charge above a fixed threshold Reconstructed position of the track is the geometrical center of cluster Spatial resolution limited to ≈ pitch/√12 Manages a single bit information per strips ANALOG READOUT Allows to set a threshold both on single strip and total charge Improvements in ghost hit rejection Strip collected charge encoding allows charge centroid reconstruction Boost spatial resolution above the pitch/√12 binary readout limit Requires the encoding of collected charge (each channel must include a digitization section) Most of the devices developed or under development are binary readout based devices. Analog readout ASICs could greatly improve spatial resolution using moderate strips pitch if spatial resolution better then 100 μm are required Why a new ASIC development for GEM strips readout ? BINARY AND ANALOG READOUT
27
What resolution is required for charge centroid measurements ? Assuming 3 mm ionization gap Ar/CO2 (70/30) gas mixture Gas gain ≈ 8000 Q ≈ 18 fC x 3 (safety factor) ENC ≈ 0.5 fC 5 bits What resolution is required for time measurements ? Time measurements in tracking devices could be helpful for bunch crossing tagging or noise rejection Self trigger capability + event time tagging add flexibility widening the device applications (i.e. medical applications) ≈ 1 ns time resolution suitable for both collider and medical applications CHARGE AND TIME MEASUREMENTS
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.