La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

STATISTICA Ivan Zivko.

Presentazioni simili


Presentazione sul tema: "STATISTICA Ivan Zivko."— Transcript della presentazione:

1 STATISTICA Ivan Zivko

2 Argomenti del corso Distribuzioni statistiche e tabelle Grafici
Misure di tendenza centrale (Medie) Misure di dispersione Rapporti statistici e numeri indice Curva di Lorentz Retta di regressione Serie storiche Campana di Gauss …..

3 Unità statistica Persona Popolazione Abitanti Svizzera (Universo)
Introduzione Popolazione (Universo) Unità statistica Abitanti Svizzera Persona

4 Introduzione: Tipi di variabili
Le unità statistiche possono avere dei caratteri o variabili che ne definiscono un aspetto, per esempio: Colore degli occhi Altezza Stipendio Ecc.

5 Variabili (Caratteri)
Tipi di variabili Variabili (Caratteri) Qualitative Ordinabili (Es.: Titolo Studio) Non ordinabili (Es.: Colore occhi) Quantitative Discrete (Es.: Note) Continue (Es.: altezza)

6 Introduzione: Modalità
Le modalità sono le possibili manifestazione di una variabile. Esempi: Colore occhi: azzurri, verdi, marroni,… Nazionalità: svizzera, italiana,… Altezza: 170cm, 175cm,…

7 Distribuzioni statistiche
Per rappresentare dei dati uno dei modi è usare delle tabelle. Nella seguente per esempio mostriamo le frequenze assolute: Colore degli occhi Frequenza assoluta Azzurri 5 Verdi 3 Marroni 7 Scuri 2 TOTALE 17

8 Distribuzioni statistiche
Un altro modo molto usato è quello di rappresentare i dati tramite le frequenze relative: Colore degli occhi Frequenza assoluta Frequenza relativa Azzurri 5 5/17=0.294=29.4% Verdi 3 0.176=17.6% Marroni 7 0.411=41.1% Scuri 2 0.118=11.8% TOTALE 17 1=100%

9 Distribuzioni statistiche
Un’altra distribuzione che può essere usata è la frequenza cumulata, che può essere sia assoluta che relativa. Numero di figli Frequenze relative Freq. Relative cumulate 1 40% 2 30% 30%+40%=70% 3 20% 90% >3 10% 100% Totale

10 Distribuzioni statistiche
Oltre alle tabelle semplici viste fino ad adesso se abbiamo più variabili contemporaneamente possiamo rappresentarle in una tabella a doppia entrata. Sesso Età Donne Uomini Totale [20, 25[ 21 24 45 [25, 30[ 25 28 53 [30, 35[ 15 31 46 61 83 144

11 Distribuzioni statistiche: suddivisione in classi
Spesso i valori sono troppi, e non conviene associare ad ognuno una modalità, perché i dati sarebbero troppi e difficili da leggere. Molto spesso si impone quindi il raggruppamento in classi.

12 Distribuzioni statistiche: suddivisione in classi
Per determinare il numero di classi ci sono 2 criteri possibili: Criterio della radice: Criterio di Sturges:

13 Distribuzioni statistiche: suddivisione in classi, esempio
Salario giornaliero di 40 dipendenti: 107 83 100 128 143 127 117 125 64 119 98 111 130 170 156 126 113 120 108 95 192 124 129 198 131 163 152 104 161 178 135 146 158 176

14 Distribuzioni statistiche: suddivisione in classi, esempio
Valore min.=64, Valore max=198. Il limite minore e quello superiore delle classi devono contenere tutti i dati. Per esempio si può far partire la prima classe da 60 e l’ultima farla finire a 200. Il range sarà pertanto: =140. Per determinare il numero di classi usiamo il criterio della radice: Si potrà creare 6-7 classi.

15 Distribuzioni statistiche: suddivisione in classi, esempio
Freq. assolute Freq. relative [60, 80[ 1 0.025 [80, 100[ 3 0.075 [100, 120[ 10 0.25 [120, 140[ 12 0.30 [140, 160[ 7 0.175 [160, 180[ 5 0.125 [180, 200[ 2 0.05 TOTALE 40

16 Grafici I grafici rispetto alle tabelle offrono una visione immediata della situazione, permettendo una più rapida memorizzazione e comprensione. La scelta del tipo di grafico dipende da fattori soggettivi ma anche dal tipo di dati e dalla scala di modalità impiegata.

17 Grafici a nastri o colonne
I grafici a nastri o a colonne (o barre) vengono usati soprattutto per variabili qualitative e quantitative discrete.

18 Grafici a nastri o colonne
Per ogni modalità del fenomeno vengono disegnati rettangoli con larghezza generica e di lunghezza proporzionale alla frequenza o all’intensità. Esempio: ricavi di 5 negozi in un mese. NEGOZIO Ricavi in euro NEG. 1 21.750 NEG. 2 21.100 NEG. 3 20.550 NEG. 4 16.800 NEG. 5 19.700

19 Grafici a nastri o colonne

20 Grafici a nastri o colonne

21 Grafici a nastri o colonne
Questo tipo di grafico è possibile utilizzarlo anche con tabelle a doppia entrata. Esempio 2: ANNI Importazioni Esportazioni 1989 1990 1991 1992 1993 1994

22 Grafici a nastri o colonne

23 Grafici a settori circolari o torta
I grafici a settori circolari vengono usati per mettere meglio in evidenza la suddivisione del fenomeno fra le varie modalità che lo compongono. Anche questo tipo di grafico è tipico per le variabili qualitative e quantitative discrete. Gli angoli dei settori di ogni modalità si calcolano col rapporto:

24 Grafici a settori circolari o torta
Consideriamo l’esempio dei ricavi dei 5 negozi:

25 Grafici a settori circolari o torta
Chiaramente le dimensioni della torta possono variare, ma se rappresentano lo stesso fenomeno le aree di una stessa modalità saranno proporzionali tra loro. Un grafico a torta può rappresentare sia frequenze assolute che relative.

26 Diagrammi cartesiani Per rappresentare l’andamento di un fenomeno al variare di un parametro si usano punti nel piano cartesiano legati da segmenti, questi grafici sono i diagrammi cartesiani. Si usano per variabili quantitative e qualitative ordinabili.

27 Diagrammi cartesiani Esempio: distribuzione delle persone che si sono recate in poliambulatorio in una settimana: Sesso Giorni Uomini Donne Totale Lunedì 31 23 54 Martedì 35 47 82 Mercoledì 33 42 75 Giovedì 19 40 59 Venerdì 39 70 TOTALE 149 191 340

28 Diagrammi cartesiani

29 Istogrammi Gli istogrammi vengono usati dove abbiamo delle variabili continue, quindi quando i dati vengono distribuiti in classi.

30 Istogrammi Esempio: nella seguente tabella abbiamo suddiviso in classi il numero di treni rispetto al loro ritardo. RITARDO (min.) N. TRENI [0, 5[ 24 [5, 10[ 10 [10, 15[ 7 [15, 20[ 11 [20,25[ 9 [25, 30[ 4

31 Istogrammi

32 Istogrammi Quando le classi non hanno ampiezza uguale bisogna fare attenzione, perché l’altezza della barra non sarà più uguale alla frequenza. Esempio 2: Numero di studenti rispetto ai mesi che hanno passato a studiare. Mesi di studio N. Studenti (Freq. Assoluta) Densità di frequenza [0, 1[ 1634 1634/1=1634 [1, 3[ 2184 2184/2=1092 [3, 6[ 4920 4920/3=1640 [6, 12[ 3384 3384/6=564 TOTALE 12122

33 Istogrammi La frequenza assoluta è rappresentata dall’area delle barre, l’altezza è la densità di frequenza.

34 Istogrammi Gli istogrammi ci mostrano quindi immediatamente la relazione tra l’ampiezza della classe e la frequenza. Una classe piccola con meno frequenze assolute può avere maggiore importanza di una classe grande con più frequenze.

35 NUMERO DI LIBRI VENDUTI
Istogrammi Esempio 2: libri venduti in una giornata per classi di prezzo. CLASSI DI PREZZO (CHF) NUMERO DI LIBRI VENDUTI DENSITÀ DI FREQUENZA [5, 15[ 20 20/10=2 [15, 20[ 15 15/5=3 [20, 35[ 15/15=1

36 Istogrammi

37

38 Forma dei grafici Sia che rappresentiamo le frequenze con un grafico a barre, un istogramma o un diagramma cartesiano, possiamo definire alcuni tipi di comportamenti a dipendenza della forma che assume il grafico.

39 Forma dei grafici Distribuzione simmetrica a campana

40 Forma dei grafici Distribuzione positivamente asimmetrica

41 Forma dei grafici Distribuzione negativamente asimmetrica

42 Forma dei grafici Distribuzione ascendente

43 Forma dei grafici Distribuzione discendente

44 Forma dei grafici Distribuzione ad “U”

45 Forma dei grafici Distribuzione bimodale

46 Forma dei grafici Distribuzione plurimodale

47

48 L’ogiva Se rappresentiamo con un istogramma le frequenze relative cumulate invece delle frequenze assolute otteniamo un grafico crescente. Se poi uniamo gli spigoli delle barre con dei segmenti otteniamo un’ogiva.

49 Freq. RELATIVA CUMULATA
L’ogiva Esempio: punti ottenuti da degli studenti in un test attitudinale. CLASSI (PUNTI) N. STUDENTI (Freq. Assoluta) Freq. RELATIVA Freq. RELATIVA CUMULATA [900, 1400[ 8 35% [1400, 1900[ 7 30% 65% [1900, 2400[ 6 26% 91% [2400, 2900[ 2 9% 100%

50 L’ogiva

51 L’ogiva Con questo grafico possiamo per esempio dire che percentuale di dati si trova al di sotto di un certo valore. Si può anche determinare quanti dati si trovano in un certo intervallo.

52 Misure di tendenza centrale
Statistica Misure di tendenza centrale Misure di tendenza centrale Medie ferme * Media aritmetica * Media geometrica Ecc. Medie di posizione * Moda * Mediana Docente: Ivan Zivko

53 Medie ferme Le medie ferme si calcolano usando tutti i valori a disposizione. Rischio: è possibile che valori molto alti o molto bassi con poca frequenza possano falsare il valore centrale, o meglio quello rappresentativo dei dati.

54 Medie Ferme: media aritmetica
È la somma di tutti i valori diviso il loro numero totale. Media aritmetica:

55 Medie Ferme: media aritmetica
Esempio 1: considera le note di 5 studenti: 3, 4, 5.5, 6, 4.5.

56 Medie Ferme: media aritmetica
Osservazione: la media aritmetica si può calcolare disponendo anche solo delle frequenze relative.

57 Medie Ferme: media aritmetica
Esempio 2: se i dati sono molti e dobbiamo suddividerli in una tabella bisognerà usare le frequenze. NOTE N. Studenti (Freq. Assoluta) Freq. relativa 3 4 0.17 6 0.25 4.5 8 0.33 5 0.125 5.5 2 0.083 1 0.042 TOTALE 24

58 Medie Ferme: media aritmetica
Esempio 2: per calcolare la media aritmetica si possono usare sia le frequenze assolute che quelle relative.

59 Medie Ferme: media aritmetica
Se i dati sono suddivisi in classi per calcolare la media aritmetica bisogna prendere i valori centrali delle classi. Esempio 3: salario dei dipendenti. Classi di stipendio (in migliaia di CHF) Numero dipendenti (Freq. Assoluta) Centro classi [50, 60[ 10 55 [60, 70[ 20 65 [70, 80[ 15 75 TOTALE 45

60

61 Medie Ferme: media aritmetica
È chiaro che suddividendo i dati in classi perdiamo delle informazioni, e quindi commetteremo un piccolo errore. L’errore dovuto all’uso delle classi sarà:

62 Medie Ferme: media aritmetica
La media aritmetica ha in genere una buona stabilità, che cresce con l'aumentare dei dati. Quando nei dati ci sono valori estremi particolarmente „pesanti“ la media aritmetica può essere molto influenzata da essi anche se in realtà non hanno una grande frequenza.

63 Medie Ferme: media geometrica
La media geometrica viene usata per dati che variano in progressione temporale, per esempio per gli indici. Media geometrica:

64

65

66 Medie Ferme: media geometrica
Esempio: È dato un bene di valore C. Questo bene nel primo anno aumenta il valore dell’ 8%, nel secondo del 12%, nel terzo del 9% e nel quarto del 5%. Si vuole trovare l’aumento percentuale medio. Da ciò si possono trovare i moltiplicatori:

67 Medie Ferme: media geometrica
Quindi alla fine dei quattro anni l’aumento si calcolerà come segue: Il moltiplicatore medio sarà: Che equivale a un aumento percentuale annuo del

68 Medie Ferme: media geometrica
Se avessimo fatto la media aritmetica avremmo ottenuto un aumento dell’8.5%. Se per ogni anno usiamo questo aumento non otteniamo il risultato esatto.

69 Medie di posizione Come detto quando ci sono valori estremi troppo grandi la media aritmetica non va più bene. Non possiamo semplicemente non tenere conto di questi valori, perchè non seguiremmo i principi fondamentali della statistica. A differenza delle medie ferme con le medie di posizione possiamo anche cercare il valore medio di variabili qualitative.

70 Medie di posizione: Moda
La moda è quella media che viene associata alla modalità con frequenza più alta. Essa è tanto più esatta quanto più la sua frequenza è elevata rispetto alle altre (se è maggiore del 50% è molto buona). Se le frequenze sono simili la moda perde la sua efficacia. Se ci sono due modalità con frequenza uguale si dice che la classe è bimodale.

71 Medie di posizione: Moda
Esempio 1: colore dei capelli di un gruppo. Colore capelli Frequenza assoluta Castani 70 Biondi 30 Rossi Altro 10

72 Medie di posizione: Moda
Il calcolo diventa un po’ più complicato se abbiamo dei dati suddivisi in classi. Prima di tutto bisogna determinare la classe modale, che è semplicemente la classe con frequenza più elevata. Per trovare il valore modale si userà la formula poi:

73 Medie di posizione: Moda

74 Medie di posizione: Moda
Esempio 2: altezze di un gruppo. Classi (Altezza) Freq. assoluta [158, 162[ 4 [162, 166[ 7 [166, 170[ 13 [170, 174[ 18 [174, 178[ 8 Totale 50

75 Medie di posizione: Moda
La classe modale è la classe [170, 174[. Usando la formula:

76 Medie di posizione: Mediana
Si definisce mediana di un insieme di elementi, disposti in ordine crescente o decrescente, il valore che occupa la posizione centrale. Esempio 1: se il numero di elementi è dispari. 8, 12, 7, 4, 9, 10, 55 Bisogna prima metterli in ordine crescente. 4, 7, 8, 9, 10, 12, 55

77 Medie di posizione: Mediana
Esempio 2: se il numero di elementi è pari. 36, 72, 82, 84, 98, 105 I due valori centrali sono 82 e 84, perciò:

78 Medie di posizione: Mediana
Se i dati sono molti, e quindi vengono rappresentati in una tabella per determinare la mediana si guardano le frequenze cumulate. La mediana è quella modalità in cui la frequenza cumulata supera il 50%.

79 Medie di posizione: Mediana
Esempio 3: numero di interrogazioni per studente. Numero interrogazioni Freq. assoluta Freq. cumulata 3 1 6 9 2 4 13 15 Totale

80

81 Medie di posizione: Mediana
Esempio 3: in questo caso la frequenza cumulata viene superata nella seconda modalità, quindi:

82 Medie di posizione: Mediana
Se i dati sono suddivisi in classi bisogna prima di tutto determinare la classe mediana, che è la classe in cui la frequenza cumulata supera il 50%. Poi per trovare il valore mediano si userà la formula:

83 Medie di posizione: Mediana
Esempio 3: prendiamo l’esempio delle altezze. Classi (Altezza) Freq. assoluta Freq. cumulata [158, 162[ 4 [162, 166[ 7 11 [166, 170[ 14 25 [170, 174[ 17 42 [174, 178[ 8 50 Totale

84 Medie di posizione: Mediana
La classe mediana è la classe [170, 174[. Usando la formula:

85 Misure di dispersione Le medie da sole non ci dicono molto sulla distribuzione dei dati. Ci servono delle misure che ci dicano quanto i dati sono dispersi intorno alle medie. La misura più importanti sono: Rango (o campo di variazione) Semidifferenza interquartile (per la mediana) Scostamento semplice assoluto Scarto quadratico medio (o deviazione standard)

86

87

88 Rango (campo di variazione)
È la differenza tra il valore più alto e quello più basso. Esempio: età di 6 persone: 45, 48, 51, 77, 81, 90.

89 Rango (campo di variazione)
Si usa quando si vuole mettere in evidenza la differenza tra il valore massimo e quello minimo di una distribuzione, come per esempio la differenza tra il peso massimo e minimo di un gruppo di persone. Da solo non ci da abbastanza informazione sulla dispersione dei dati.

90 Semidifferenza interquartile
Abbiamo visto che la mediana corrisponde al valore che si situa al 50% dei dati. Se dividiamo i dati in 4 parti abbiamo i quartili!

91

92

93 Semidifferenza interquartile
Questa misura si usa solo per la mediana. Il calcolo è il seguente: Il 50% dei dati si trova nell’intervallo

94 Semidifferenza interquartile
Esempio: immagina semplicemente di avere 20 dati: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 La mediana corrisponde a 10.5. Mentre 𝑄 1 =5 𝑒 𝑄 3 =15, perciò la semidifferenza interquartile è Significa che circa il 50% dei dati si trova tra 5.5 e 15.5.

95 Semidifferenza interquartile
Esempio 2: se i dati sono suddivisi in classi come prima cosa bisogna guardare le frequenze cumulate relative. Classi (Altezza) Freq. assoluta Freq. cumulata Freq. Cum. Rel. [158, 162[ 4 8% [162, 166[ 9 13 26% [166, 170[ 26 52% [170, 174[ 16 42 84% [174, 178[ 8 50 100% Totale

96

97 Semidifferenza interquartile
Esempio 2:

98 Scostamento medio semplice
È la media degli scostamenti! Esempio: considera cinque valori: 2, 2, 6, 6, 9.

99 Scarto quadratico medio (Deviazione standard)
La deviazione standard è la misura di dispersione più usata in assoluto. Almeno il 68% dei dati si trova in questo intervallo. M-σ M M+σ

100 Scarto quadratico medio (Deviazione standard)
Se M è la media, allora definiamo come varianza: La deviazione standard è la sua radice quadrata:

101 Scarto quadratico medio (Deviazione standard)
Esempio: ospiti di un albergo per numero di pernottamenti. N. Notti Frequenza 5 39 6 30 7 13 8 9 3

102 Scarto quadratico medio (Deviazione standard)
Calcoliamo la varianza: E quindi la deviazione standard è: Almeno il 68% dei dati si troverà nell’intervallo:

103 Dati standardizzati Per confrontare dati che fanno parte di serie diverse bisogna che siano standardizzati rispetto alle rispettive medie e allo scarto tipo. Esempio: uno studente all’esame di fisica ha preso 4.5, la media della classe era 4.2 e lo scarto tipo 0.9. Lo stesso studente a matematica prende 5, ma la media è 4.7 e lo scarto 1.2. Qual’ è il voto relativamente migliore?

104 Dati standardizzati Per prima cosa vediamo quanto meglio ha fatto rispetto alla media della classe nelle due materie: Questo dato va però normalizzato rispetto allo scarto tipo: FISICA MATEMATICA FISICA MATEMATICA

105 Dati standardizzati Più lo scarto tipo è alto e più ci saranno studenti che si allontanano dalla media, e quindi che hanno fatto anche meglio del nostro studente. Lo studente ha fatto quindi relativamente meglio l’esame di fisica.

106 Rapporti statistici: rapporto di coesistenza
I rapporti di coesistenza mettono a confronto due fenomeni diversi relativi allo stesso tempo e luogo. Esempio: un agenzia turistica organizza un tour, al quale partecipano 302 donne e 208 uomini. Il rapporto di coesistenza è: Moltiplicando per abbiamo: Significa che ci sono 145 donne ogni 100 uomini.

107 Rapporti statistici: rapporto di durata e ripetizione
I rapporti di durata e ripetizione sono rapporti utili per descrivere le variazioni quantitative subite da un certo fenomeno (es.: scorte in magazzino che si rinnovano, variazioni di degenti in ospedale, ecc.). Rapporto di durata:

108 Rapporti statistici: rapporto di durata e ripetizione
In un negozio, che resta aperto 8 ore, al momento dell’apertura ci sono 100 (C0) persone. Durante il giorno ne sono entrate altre 950 (E) e uscite 750 (U).

109 Rapporti statistici: rapporto di durata e ripetizione
Rapporto di ripetizione: Dall’esempio: ciò significa che le persone all’interno del negozio si rinnovano completamente 4.25 volte nel corso della giornata.

110 Numeri indice I numeri indice sono dei rapporti statistici che evidenziano le variazioni, temporali o spaziali, di un fenomeno. Si calcolano eseguendo il rapporto dei dati di una serie per uno di essi (detto base). Si possono quindi distinguere in: Numeri indice semplici a base fissa. Numeri indice semplici a base mobile. Numeri indice composti.

111 Numeri indice: applicazioni
Il costo della vita (indice dei prezzi al consumo) Costo della produzione industriale Evoluzione della massa monetaria

112 Numeri indice: costruzione
Statistica Numeri indice: costruzione Per trasformare una serie di valori in indici dobbiamo prima di tutto scegliere un valore che funga da base. In seguito dividere tutti gli altri valori per la base, e eventualmente moltiplicare per 100. Docente: Ivan Zivko

113 Numeri indice: tipologia
Le tipologie più usate di numeri indice sono: Indice dei prezzi Indice delle quantità (produzione, consumo,..) Indice del valore

114 Numeri indice: costruzione
Esempio 1: Il prezzo di un certo bene nel 1980 era di 20 Fr., nel 1981 di 24 Fr. e nel 1982 di 25 Fr.. Se prendiamo come base il prezzo del avremo: 𝑝 80,80 = ∙100=100 𝑝 81,80 = ∙100=120 𝑝 82,80 = ∙100=125

115 Numeri indice: costruzione
Esempio 2:una ditta ha esportato nel t di cereali, nel t e nel t. Prendendo come base la quantità del 1980: 𝑞 80,80 = ∙100=100 𝑞 81,80 = ∙100≈91 𝑞 82,80 = ∙100≈106

116 Numeri indice: costruzione
Esempio 3:una ditta nel 1980 ha esportato t di cereali a 60 Fr la tonnellata, mentre nel 1981 solamente t a 62 Fr la tonnellata. L’indice del valore con base 1980 sarà: 𝑣 81,80 = 29000∙ ∙60 ∙100=≈94

117 Numeri indice a base fissa
Esempio 4: produzione di lavatrici e lavastoviglie in alcuni anni. Anni Lavatrici prodotte Indici (base=1991) 1991 5’043’983 100 1992 5’140’277 102 1993 5’692’505 113 1994 6’251’283 124 1995 6’995’818 139

118 Numeri indice a base fissa
Esempio 4: Anni Lavastoviglie prodotte Indici (base=1991) 1991 950’940 100 1992 937’720 99 1993 1’141’861 120 1994 1’464’885 154 1995 1’683’093 177

119 Numeri indice a base fissa
Esempio 4:

120 Numeri indice a base mobile
Spesso invece di evidenziare l’andamento di un fenomeno rispetto a un solo anno, si vuole studiare la variazione di ogni dato rispetto all’anno precedente. La base diventa il valore dell’anno precedente. Si parla di base mobile.

121 Numeri indice a base mobile
Esempio 5: consideriamo i dati dell’esempio 4 e prendiamo come base l’anno precedente. Anni Indici lavatrici base mobile Indici lavastoviglie base mobile 1991 - 1992 102 99 1993 111 122 1994 110 128 1995 112 115

122 Numeri indice a base mobile
Esempio 5:

123 Numeri indice: proprietà
Le seguenti proprietà valgono se gli indici non sono ancora stati moltiplicati per 100. Proprietà di simmetria: Proprietà transitiva:

124 Numeri indice: cambiamento di base
Per trasformare una serie di indici da una base ad un’altra bisogna dividere tutti gli indici per quello dell’anno che desidero usare come base.

125 Numeri indice: cambiamento di base
Esempio: sono dati gli indici concernenti lo sviluppo della cifra d’affari di due apparecchi. ANNO INDICE App. A Anno base=2000 App. B Anno base=2002 2000 100 -- 2001 108 2002 112 2003 117 2004 124 114

126 Numeri indice: cambiamento di base
Per poter confrontare le due serie di dati dobbiamo trasformare tutto nella stessa base, che in questo caso deve essere l’anno 2002:

127 Numeri indice: cambiamento di base
Adesso i dati sono confrontabili: ANNO INDICE App. A Anno base=2002 App. B 2000 89 -- 2001 96 2002 100 2003 104 108 2004 111 114

128 Numeri indice aggregati, semplici e ponderati
Spesso gli indici sono composti da più fattori, per esempio l’indice dei prezzi è composto dai prezzi di più beni (es.: pane, latte, …). Per esempio se l’anno base è 1:

129 Numeri indice aggregati, semplici e ponderati
Calcolare gli indici aggregati ponderati significa moltiplicare i prezzi per le quantità, quindi l’indice dei valori:

130 Numeri indice aggregati, semplici e ponderati
Esempio: prezzo e quantità prodotta di fitofarmaci tra il 2000 e il 2001: Prodotti Prezzo (Fr. per pezzo) 2000 2001 Quantità (in migliaia) Anticrittogamici 2 3 67 72 Diserbanti 2.5 35 29 Insetticidi 1 22 27

131 Numeri indice aggregati, semplici e ponderati
Volendo calcolare l’indice ponderato dei fitofarmaci tra 2000 e 2001 potremmo fare:

132 Numeri indice aggregati, semplici e ponderati
In realtà ci sono alcuni metodi particolari usati per il calcolo degli indici: Indice di Laspeyeres: metodo dell’anno base Indice di Paasche: metodo dell’anno dato Metodo dell’anno tipico (la quantità base è la media delle quantità) Indice di Fisher: media geometrica tra Laspeyeres e Paasche

133 Numeri indice aggregati, semplici e ponderati
Indice di Laspeyeres: si prende sempre la quantità dell’anno base.

134 Numeri indice aggregati, semplici e ponderati
Indice di Paasche: si prende sempre la quantità dell’anno dato.

135 Numeri indice aggregati, semplici e ponderati
Indice di Fisher: si fa la media geometrica tra l’indice di Laspeyeres e Paasche:

136 Misura di concentranzione
Una misura di concentrazione serve in statistica per verificare in che modo un certo bene è diviso tra la popolazione, oppure per misurare la presenza di un prodotto o di impresa in un certo territorio.

137 Misura di concentrazione
Esempio: distribuzione di un pacchetto azionario fra gli azionisti. Cerchiamo di stabilire se le azioni sono distribuite equamente o no. Classi azioni Frequenze Ammontare azioni [0, 10[ 250 1250 [10, 20[ 400 6000 [20, 30[ 190 4750 [30, 40[ 100 3500 [40, 50[ 40 1800 Oltre 50 20 1400 Totale 1000 18700

138 Misura di concentrazione
Trasformiamo i dati in percentuali, e poi ricaviamo le percentuali cumulate: Classi azioni Percentuale azionisti Perc. cumulata azionisti Percentuale azioni Perc. cumulata azioni [0, 10[ 25 6.68 [10, 20[ 40 65 32.08 38.76 [20, 30[ 19 84 25.4 64.16 [30, 40[ 10 94 18.72 82.88 [40, 50[ 4 98 9.63 92.51 Oltre 50 2 100 7.49 Totale

139 Misura di concentrazione
Dalla tabella possiamo ottenere per esempio le seguenti informazioni: Il 65% degli azionisti possiede il 38.76% delle azioni L’84% degli azionisti possiede il 64.16% delle azioni Ecc.

140 Misura di concentrazione
Possiamo rappresentare la situazione bene con un diagramma cartesiano, che in questo caso viene chiamato anche curva di concentrazione o curva di Lorentz.

141 Misura di concentrazione
Nel caso di equidistribuzione tutti gli azionisti dispongono di uno stesso numero di azioni: per esempio il 25% degli azionisti possiede il 25% delle azioni, ecc.. Retta di equidistribuzione:

142 Misura di concentrazione
Più la curva di Lorentz si avvicina alla retta di equidistribuzione, più i beni sono divisi equamente tra la popolazione.

143 Retta di regressione Spesso si desidera analizzare l’andamento di una variabile rispetto al tempo oppure rispetto a un’altra variabile. Se un minimo legame effettivamente esiste è possibile ricavare la retta di regressione, che ci permette inoltre di fare previsioni.

144 Retta di regressione Esempio: esportazioni ed importazioni in milioni di dollari di alcuni paesi nel 1986. PAESE Importazioni Esportazioni Danimarca 22.8 22.1 Irlanda 11.6 12.6 Olanda 75.4 80.6 Svizzera 40.9 37.3 Italia 100 97.5 Svezia 32.5 37.5 Portogallo 9.4 7.2

145 Retta di regressione

146 Retta di regressione Un equazione generale di una retta ha la seguente forma:

147 Retta di regressione: Covarianza
Per poter calcolare la retta di regressione dobbiamo prima calcolare la covarianza, un valore che lega due variabili X e Y. Siano x1, x2, …, xn i valori della prima variabile e Mx la loro media, rispettivamente y1,.., yn i valori della seconda variabile e My la loro media:

148 Retta di regressione Quindi per determinare la retta noi dobbiamo determinare a e b.

149 Retta di regressione Riprendiamo l’esempio sulle esportazioni e importazioni e calcoliamo la retta di regressione.

150 Retta di regressione Quindi otteniamo:
Questa retta approssima i punti, e permette di fare delle previsioni, per esempio come sarebbero le esportazioni se le importazioni fossero 120 milioni di dollari:

151 Retta di regressione

152

153 Serie storiche Una serie storica è la classificazione di una variabile rispetto al tempo. Le serie storiche vengono studiate sia per interpretare un fenomeno, individuando componenti di trend, di ciclicità, di stagionalità e/o di accidentalità, sia per prevedere il suo andamento futuro.

154 Serie storiche Esempi di fenomeni analizzabili con serie storiche sono: Numero di dipendenti di un azienda Indice dei prezzi PIL Vendite …..

155 Serie storiche Esempio: PIL italiano trimestrale dal 1981 al 2008

156 Serie storiche Il movimento tendenziale (o trend) della serie indica il suo andamento crescente o decrescente nel tempo, senza considerare le possibili fluttuazioni (vedi per esempio la retta di regressione). Riguarda l’andamento sul lungo periodo (diversi anni).

157 Serie storiche Il movimento ciclico della serie indica le fluttuazioni periodiche o non periodiche attorno alla curva di trend con durata pluriannale (ciclo economico). Riguarda l’andamento sul medio periodo (qualche anno).

158 Serie storiche Questo movimento può essere suddiviso in 4 fasi del ciclo economico (movimenti congiunturali): Prosperità: aumento superiore a quello dell’anno precedente. Recessione: aumento inferiore a quello dell’anno precedente. Crisi: diminuzione negativa superiore a quella dell’anno precedente. Ripresa: diminuzione negativa inferiore a quella dell’anno precedente.

159 Serie storiche Il movimento stagionale rappresenta il ripetersi di situazioni che fanno variare l’andamento della serie con oscillazioni più o meno forti negli stessi periodi dell’anno. Ad esempio l’aumento del consumo di carburante in inverno o la diminuzione della produzione in estate. Riguarda quindi l’andamento sul breve periodo.

160 Serie storiche Il movimento accidentale provoca oscillazioni dovute ad eventi casuali come scioperi, calamità naturali o concorrenza non prevista.

161 Teoria dei campioni Quando si vogliono rilevare dei dati, per ricavare delle informazioni o fare previsioni, lo si fa di solito su di un campione statistico e non sull’intera popolazione, perché troppo numerosa.

162 Teoria dei campioni È importante definire i criteri e le modalità per l’estrazione del campione, infatti è indispensabile che il campione sia rappresentativo della popolazione in relazione alla variabile indagata. Se per es. si vuole valutare il reddito medio dei lavoratori di una città bisogna che nel campione tutte le categorie siano rappresentate nelle percentuali giuste.

163 Teoria dei campioni Per ottenere dei campioni rappresentativi si può procedere con un campionamento casuale. Per ottenere ciò a ogni elemento dell’universo si assegna un numero progressivo, si ricorre poi a una tavola dei numeri casuali oppure all’estrazione.

164 Teoria dei campioni Esempio: si vuole campionare il peso di 14 lamine, estratte da un universo di 1500.


Scaricare ppt "STATISTICA Ivan Zivko."

Presentazioni simili


Annunci Google