La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Avviare la presentazione col tasto “Invio”

Presentazioni simili


Presentazione sul tema: "Avviare la presentazione col tasto “Invio”"— Transcript della presentazione:

1 Avviare la presentazione col tasto “Invio”
Lezione VI Avviare la presentazione col tasto “Invio”

2 Energia cinetica a = F / m m di una quantità x. F a x d=x x
Supponiamo il caso in cui la risultante F delle forze applicate ad una massa m sia costante (in termini vettoriali cioè sia in modulo che in direzione e verso). Come sappiamo, una forza costante imprime alla massa in questione una accelerazione costante a, data dalla II Legge di Newton: a = F / m Scegliamo come sistema di riferimento l’asse delle x coincidente con la direzione comune della forza F e dell’accelerazione a, e calcoliamo il lavoro fatto dalla forza F nello sposare la massa m di una quantità x. F a x d=x x

3 Il prodotto scalare fra i due vettori F e d L = F • d in questo caso si riduce ad una
semplice moltiplicazione: F x. Stiamo parlando di un moto uniformemente accelerato (a = costante, in senso vettoriale, quindi in modulo, direzione e verso), e quindi rettilineo. La forza, l’accelerazione e lo spostamento hanno quindi la stessa direzione. Il prodotto scalare F • d si riduce al prodotto dei moduli dei due vettori. L = F x Essendo a = costante, dalle equazioni del moto definite in cinematica sia ha: v = v0 + a t  a = (v –v0) / t x = <v> t  x = ½ (v+v0) t Dove v0 è la velocità della particella a t = 0 e v è a sua velocità all’istante t

4 variazione di Energia Cinetica
Il lavoro L = F x è quindi dato da: L = F x = ma x = m (v –v0) / t x ½ (v+v0) t = = ½ mv2 − ½ mv02 (ricordate i «prodotti notevoli» ?) Definiamo questa quantità l’Energia Cinetica (energia di movimento) della massa m e la indicheremo col simbolo K K= ½ mv2 In base a questa formulazione quindi: Il lavoro fatto da una forza su una particella è uguale alla sua variazione di Energia Cinetica

5 ∫ x x0 a = dv/dt = (dv/dx)(dx/dt) = (dv/dx) v = v dv/dx
Sebbene abbiamo ricavato questa formulazione nel semplice caso di una forza costante, si dimostra che la formulazione è del tutto generale e vale anche nel caso di una forza variabile. Supponiamo per esempio il caso di una forza F che varia in modulo, in funzione della posizione, ma non in direzione. Consideriamo lo spostamento s nella direzione dell’asse x. Il lavoro fatto dalla forza F per spostare la particella da x0 a x è dato da: x L = F • d = F(x) dx x0 In base alla II Legge di Newton F=ma. L’accelerazione a può essere scritta come: a = dv/dt = (dv/dx)(dx/dt) = (dv/dx) v = v dv/dx

6 (Teorema Lavoro-Energia)
Quindi: F = ma diventa F = m v dv/dx e di conseguenza: x x v L = F(x) dx = [mv (dv/dx)]dx = mv dv = = ½ mv2 − ½ mv02 x0 x0 v0 Si dimostra che anche nel caso in cui la forza non solo varia in modulo, ma varia anche in direzione, in ogni caso risulta sempre che il lavoro fatto dalla risultante delle forze su una particella è eguale alla sua variazione di energia cinetica : L (lavoro della forza risultante) = K –K0 = ΔK (Teorema Lavoro-Energia)

7 Il caso del moto circolare uniforme
Non dobbiamo dimenticare che il lavoro è il prodotto scalare della forza per lo spostamento. Ciò che è rilevante pertanto è la componente della forza nella direzione dello spostamento. In tutti i casi in cui la forza applicata risulta ortogonale allo spostamento, risulta evidente che L = Per esempio nel moto circolare uniforme, la forza centripeta, istante per istante, è ortogonale allo spostamento e pertanto tale forza NON compie lavoro sulla massa m in questione. In generale, una forza che determina una variazione della sola direzione della velocità, ma non del suo modulo, NON compie lavoro. Infatti, se una forza avesse una componente nella direzione del moto (così da avere L ≠ 0), allora determinerebbe anche una variazione del modulo della velocità.

8 Sul significato di lavoro negativo
Supponiamo che l’energia cinetica K di una particella diminuisca. Allora il lavoro L fatto su di essa dalla risultante F delle forze applicate risulta negativo L = K − K0 < 0 se K < K0 Questa equazione può essere interpretata affermando che l’energia cinetica di una particella diminuisce di una quantità eguale al lavoro da essa prodotto per contrastare una forza (così come aumenta di una quantità uguale al lavoro ricevuto da una forza) In sostanza: una particella in moto possiede una certa quantità di energia, sotto forma di energia cinetica (energia di movimento). Non appena produce lavoro, perde energia cinetica (cioè velocità). Quindi: l’energia cinetica di un corpo in movimento è pari al lavoro che produce nel fermarsi.

9 Ecco il significato del teorema lavoro-energia: il lavoro produce energia, l’energia
restituisce lavoro in pari misura. In senso figurativo potremmo affermare che entrambe sono due grandezze fisiche in cui in sostanza l’energia appare come «accumulata» Supponiamo per esempio che un blocco di massa m si muova su un tavolo senza attrito ad velocità costante v. Lungo il suo percorso incontra una molla ancorata ad una parete che lo porta a riposo, cioè lo ferma. In base al teorema lavoro-energia, possiamo per esempio determinare di quanto si comprime la molla se la sua costante elastica è nota.

10 ∫ K= ½ mv2 x ½ kx2 = ½ mv2 x = (mv/k)1/2
Il blocco in movimento possiede una energia cinetica K data dalla relazione: K= ½ mv2 Questa energia cinetica eguaglia il lavoro che il blocco esegue sulla molla nell’arrestarsi, e che è dato dalla: L = F(x) dx dove: F(x) = kx  L = ½ kx2 x Eguagliando lavoro ed energia, si ha pertanto: ½ kx2 = ½ mv2 Da cui possiamo ricavare la compressione della molla x: x = (mv/k)1/2

11 E interessante verificare che se lasciamo la molla libera di espandersi, la massa m riacquista
interamente l’energia cinetica ceduta alla molla sotto forma di lavoro Quello che avevamo appena affermato sul significato del teorema lavoro energia Ecco il significato del teorema lavoro-energia: il lavoro produce energia, l’energia restituisce lavoro in pari misura. In senso figurativo potremmo affermare che entrambe sono due grandezze fisiche in cui in sostanza l’energia appare come «accumulata»

12 E questo ci ricorda qualcosa che avevamo intuito durate la prima lezione, discutendo
in modo del tutto qualitativo i concetti di energia potenziale e energia cinetica Energia Potenziale Energia cinetica E infatti, vedremo che la definizione di questa grandezza fisica, il lavoro, ci conduce verso la definizione dell’energia potenziale.

13 E vedremo che per avvicinarci alla definizione dell’energia potenziale, e più in generale
per enunciare il grande principio della Conservazione dell’Energia, dovremo distinguere alcuni tipi di forze. E quindi in alcuni casi potrà essere utile calcolare separatamente il lavoro fatto su una particella da ogni forza applicata, piuttosto che individuare direttamente il lavoro fatto dalla risultante delle forze. Per capire il fatto che esistono differenti tipi di forze, e che non tutte «rispondono» allo stesso modo al teorema lavoro-energia, consideriamo i seguenti esempi: L’esempio della molla considerato prima, in cui una massa m è arrestata da una molla Il caso in cui la massa m è arrestata da una parete assorbente

14 L’esempio della molla considerato prima, in cui una massa m è arrestata da una molla
b) Il caso in cui la massa m è arrestata da una parete assorbente

15 Supponiamo di bloccare entrambe le masse non appena si sono fermate:

16 Adesso lasciamo nuovamente libere le masse e vediamo che succede:

17 Cosa è successo ? Nel primo caso: la molla ha interamente restituito alla massa m la sua energia cinetica Qualcosa che ci ricorda questo grafico: Energia Potenziale Energia cinetica b) Nel secondo caso: il cuscino non ha restituito per niente alla massa m la sua energia cinetica

18 Vedremo nel seguito che esistono forze conservative
e forze non conservative, e vedremo cosa vuol dire alla luce di questo esperimento

19 Lezione VI – seconda parte
Avviare la presentazione col tasto “Invio”

20 La Legge di conservazione dell’energia

21 Forze conservative e forze non conservative
Consideriamo un pallone che viene lanciato verso l’alto con una velocità inziale v0, il che corrisponde ad una energia cinetica inziale K0 = ½ mv02 Cosa possiamo notare ? A causa della forza di gravità F = -mg la sua velocità decresce, fino ad annullarsi una volta raggiunto il punto più alto ymax . Di conseguenza in questo punto K = 0 Poi la il pallone inverte il suo moto e la sua velocità, e di conseguenza la sua energia cinetica aumenta, fino ad arrivare allo stesso valore inziale, quando arriva a terra y ymax v=0  K=0 v=v0  K0 = ½ mv02

22 Avevamo visto che un corpo dotato di energia cinetica è in grado di effettuare lavoro
(a scapito della sua energia cinetica): Non c’è dubbio che nel caso della palla lanciata verticalmente, dopo un viaggio di andata e ritorno, la capacità della palla a fare lavoro è ritornata la stessa, è stata conservata.

23 Se per esempio posizionassimo a terra una molla che la palla intercetta prima di
toccare il suolo…..: y E questo ovviamente vale anche per il corpo che viaggiava In orizzontale: se nel suo viaggio di ritorno, verso sinistra, incontra un’altra molla, è di nuovo in grado di comprimerla a scapito della sua energia cinetica. ymax v=0  K=0 v=v0  K0 = ½ mv02 Le forze per cui si osserva questo fenomeno si chiamano forze conservative: lo è la forza esercitata da una molla, come lo è la forza gravitazionale

24 In un esperimento di questo tipo, l’energia cinetica viene ceduta e riacquisita periodicamente

25 Le forze conservative, come la forza di una molla o come la forza gravitazionale,
sono in grado di restituire ad una massa m la sua energia cinetica. Le forze non conservative come le forze di attrito, o di deformazione non elastica NO!!! Il blocco NON riacquista la sua energia cinetica !!!

26 Quindi: se in parallelo ad una forza conservativa (per esempio la forza gravitazionale)
è presente anche una forza non conservativa, per esempio l’attrito dell’aria, non tutta l’energia cinetica della massa m sarà restituita: Se per esempio il pallone nel suo viaggio di andata e ritorno in verticale è soggetto all’attrito dell’aria, il pallone tornerà al punto di partenza con meno energia cinetica di quanto ne possedeva alla partenza.

27 Possiamo definire le forze conservative in base al lavoro L da esse eseguito:
Se non vi è variazione di energia cinetica di una massa m alla fine di un certo percorso, il lavoro fatto su di esso lungo lo stesso percorso è nullo. Ciò deriva dal teorema lavoro-energia L = ΔK = 0 Nel caso del pallone lanciato in verticale, il lavoro negativo fatto dalla forza di gravità durante la fase di salita (in cui la massa m perde energia cinetica), è uguale ma di segno opposto al lavoro positivo eseguito sulla massa m nella fase di discesa in cui la massa riacquista la sua energia cinetica. Quindi: il lavoro fatto dalla forza di gravità in un ciclo completo è nullo.

28 Più in generale: una forza si dice conservativa se il lavoro fatto
su una massa m in un ciclo completo (cioè un ciclo chiuso) è nullo. Nel caso delle forze d’attrito, queste si oppongono al moto della massa m sia in salita che in discesa, rendendo negativo il lavoro totale fatto in un ciclo completo, con una perdita netta di energia cinetica da parte della massa m. Queste infatti sono forze non conservative

29 Una conseguenza interessante è che dati due punti A e B, il lavoro fatto da una data forza
conservativa F nel muovere una massa m da A a B è indipendente dal percorso effettuato. B A

30 Questo è proprio una conseguenza del fatto che il lavoro eseguito da una forza
conservativa su una massa m in un ciclo completo (cioè un ciclo chiuso) è nullo. Consideriamo per esempio il lavoro fatto dalla forza di gravità per spostare una massa m da B ad A lungo il percorso B-C-A Il lavoro risulta essere: L = m g h B Il lavoro fatto per chiudere il tratto A-B lungo uno qualsiasi dei percorsi di ritorno indicati, dovrà essere necessariamente L = − m g h Questo in quanto su ciclo chiuso B  B deve risultare L = 0 h C A

31 In sostanza, ciò che risulta rilevante ai fini del computo del lavoro L effettuato da una
forza conservativa F nel muovere una massa da A a B è la sola componente del segmento A-B lungo la direzione della forza F, o le componenti dei segmenti verticali infinitesimi Δh lungo la direzione della forza, la cui sommatoria è sempre: B ∑ Δh = h per il percorso in salita ∑ Δh = −h per il percorso in discesa F = -mg A

32 In sostanza, quando la massa m si muove dalla quota A alla quota B, il lavoro fatto
dalla forza in questione è negativo (si deve fare lavoro contro la forza di gravita: il pallone lo fa a scapito della sua energia cinetica) B A

33 Quando invece la massa m si muove dalla quota B alla quota A, il lavoro fatto
dalla forza in questione è positivo (il pallone riacquista la sua energia cinetica) B A

34 Al contrario, nel caso di forze NON conservative, per esempio le forze d’attrito, il
lavoro fatto dalla forza in questione dipende dal percorso seguito per spostarsi fra il punto iniziale e il punto finale e in generale il lavoro lungo un ciclo chiuso NON è nullo. Supponiamo per esempio un corpo che si muove su un tavolo, dotato di attrito, da un punto A ad un punto B seguendo di volta in volta percorsi differenti: B A

35 Al contrario, nel caso di forze NON conservative, per esempio le forze d’attrito, il
lavoro fatto dalla forza in questione dipende dal percorso seguito per spostarsi fra il punto iniziale e il punto finale e in generale il lavoro lungo un ciclo chiuso NON è nullo. Supponiamo per esempio un corpo che si muove su un tavolo, dotato di attrito, da un punto A ad un punto B seguendo di volta in volta percorsi differenti: B A

36 Al contrario, nel caso di forze NON conservative, per esempio le forze d’attrito, il
lavoro fatto dalla forza in questione dipende dal percorso seguito per spostarsi fra il punto iniziale e il punto finale e in generale il lavoro lungo un ciclo chiuso NON è nullo. Supponiamo per esempio un corpo che si muove su un tavolo, dotato di attrito, da un punto A ad un punto B seguendo di volta in volta percorsi differenti: B A

37 In qualsiasi direzione si stia muovendo ad ogni istante il corpo in questione, la forza di
attrito si oppone sempre al suo moto, quindi effettua sempre un lavoro negativo a scapito dell’energia cinetica del corpo. B A

38 E quindi anche lungo un ciclo chiuso, il lavoro NON risulta nullo, ma negativo, con una perdita netta di energia cinetica B A

39 Possiamo adottare indifferentemente le due definizioni di forze conservative, che
sono una la conseguenza dell’altra. Una forza si dice conservativa se il lavoro da essa eseguito nello spostare un corpo da un punto ad un altro dipende solo dalla posizione dei due punti e non dal percorso seguito. Una forza si dice conservativa se il lavoro da essa eseguito nello spostare un corpo lungo un percorso chiuso risulta nullo.

40 Lezione VI –terza parte
Avviare la presentazione col tasto “Invio”

41 Energia potenziale

42 Abbiamo visto che il lavoro fatto da una forza conservativa su di una particella dipende
soltanto dal punto di partenza e da punto di arrivo. Ne consegue che una tale forza può dipendere solo dalla posizione della particella, e non per esempio dal tempo, o dalla velocità della particella. Per esempio se la forza dipendesse dal tempo, adottando fra i due punti A e B un percorso che ci fa impiegare più tempo, il lavoro risulterebbe differente rispetto a quello risultante per un percorso che ci fa impiegare meno tempo. Il che abbiamo visto che non è il caso.

43 Consideriamo il caso di un percorso rettilineo di una massa m
Consideriamo il caso di un percorso rettilineo di una massa m. Il lavoro fatto dalla risultante F delle forze applicate alla massa in questione è uguale alla variazione di energia cinetica della massa m L = Fdx = ½ mv2 − ½ mv02 x x0 Nel caso di un moto unidimensionale, tutte le forze che dipendono dalla posizione sono conservative. Se F dipende solo da x, l’energia cinetica del corpo dipende anche essa solo da x. Può essere diversa in posizioni differenti dell’asse x ma è sempre la stessa in un dato punto. L’esempio della palla lanciata verticalmente in alto o di una massa che incide su una molla illustrano questo caso. In queste condizioni stabiliremo che ogni variazione dell’energia di movimento, l’energia cinetica, lungo il percorso, è associata ad una variazione di segno opposto dell’energia di posizione, l’energia potenziale.

44 ∫ ∫ ΔK = −ΔU ΔK = F(x)dx x ΔU = − F(x)dx x0 x x0
Rappresentando con U l’energia potenziale, questo enunciato risulta espresso dalla formula ΔK = −ΔU In base al teorema lavoro-energia che abbiamo appena riscritto, la variazione di energia cinetica vale: ΔK = F(x)dx da cui ne segue che: ΔU = − F(x)dx Questa quantità è funzione soltanto della posizione x x0 x x0

45 Notiamo che in generale :
ΔU = − F(x)dx = F(x)dx (abbiamo invertito gli estremi di integrazione) Quindi possiamo scrivere: ΔU = U(x) –U(x0) = F(x) dx Cioè: la variazione dell’energia potenziale che si osserva posizionandosi in un punto x, rispetto al valore in un punto di riferimento x0 è il lavoro fatto dalla forza quando la particella si muove dal punto x al punto x0 x x0 x0 x x0 x

46 ∫ ∫ ∫ x0 U(x) –U(x0) = F(x) dx x x Fdx = ½ mv2 − ½ mv02 x0 x
Confrontando la formula appena enunciata: x0 U(x) –U(x0) = F(x) dx x con la formula del teorema lavoro-energia: x Fdx = ½ mv2 − ½ mv02 x0 ci rendiamo conto che possiamo riscrivere quest’ultima come segue, semplicemente invertendo di segno ambo i membri dell’equazione x − Fdx = ½ mv02 − ½ mv2 x0 Dove il primo membro è uguale a U(x) –U(x0) (cambiando il segno e invertendo i limiti)

47 U(x) –U(x0) = ½ mv02 − ½ mv2 E = U + K Risulta quindi: cioè:
U(x) + ½ mv2 = U(x0) + ½ mv02 Si noti che in questa equazione compaiono soltanto posizione e velocità Il membro di destra di questa equazione dipende soltanto dalla posizione e dalla velocità iniziali v0 e x0 e la quantità U + K a sinistra si mantiene pertanto costante ed uguale al valore iniziale in qualsiasi punto x durante il moto unidimensionale. Definiremo l’energia meccanica totale la quantità E = U + K Questa quantità si conserva durante il moto quando la forza in gioco è conservativa

48 In sostanza, abbiamo ricavato la Legge di Conservazione dell’Energia Meccanica
(cinetica + potenziale): E = U + K di cui avevamo intuito fin dalla prima lezione l’esistenza. Energia potenziale U Energia cinetica K Energia Meccanica E

49 In molti casi, quando le forze in gioco sono conservative, e quando gli effetti di altre
forze non conservative sono trascurabili, l’applicazione diretta di questa Legge ci consente di risolvere rapidamente un problema senza necessariamente trattare quantitativamente le forze in questione e senza quindi dovere applicare le Leggi di Newton.

50 ∫ ∫ x ΔU = − F(x)dx x0 F(x) = − dU(x) / dx ΔU = dU x x0
Riscriviamo una delle formule precedenti: x ΔU = − F(x)dx x0 La relazione fra forza ed energia potenziale può essere anche scritta come segue: F(x) = − dU(x) / dx Infatti sostituendo questa formulazione nella formula precedente si ottiene una identità: ΔU = dU Quindi l’energia potenziale U è una funzione della posizione la cui derivata (cambiata di segno) dà la forza. Cioè a sua volta la forza (cambiata di segno) rappresenta la rapidità «spaziale» con cui cambia l’energia potenziale. Cioè il tasso di variazione di energia potenziale lungo x è rappresentato dalla forza. x x0

51 ∫ ∫ I due esempi classici di sistemi conservativi unidimensionali
Due esempi classici di forze conservative sono la forza di gravità e la forza di richiamo di una molla Il caso della forza di gravità Nel caso della forza di gravità, il moto unidimensionale è verticale. Assumendo l’asse positivo delle y diretto verso l’alto, la forza di gravità risulta diretta secondo il verso negativo delle y. Si ha quindi: F = −mg = costante (che rappresenta un caso particolare di una forza dipendente dalla posizione). Per l’energia potenziale potremo scrivere pertanto: U(y) – U(0) = (−mg) dy = mgy = Fdy y y Adottando una energia potenziale nulla per y = 0, si ha semplicemente: U (y) = m g y

52 Il fatto che l’energia potenziale di una massa m ad una certa altezza dal suolo
cresca con l’altezza è certamente coerente con la nostra esperienza quotidiana: Maggiore è l’altezza h dalla quale lasciamo cadere una massa m, maggiore è la velocità (e quindi l’energia cinetica) con cui arriva al suolo.

53 ∫ ∫ F = −k x dove k è la costante elastica della molla
Il caso della forza di una molla Consideriamo la forza esercitata da una molla elastica su di una massa m che si muove su di una superficie orizzontale (priva di attrito), e consideriamo il punto x0 = 0 come posizione di equilibrio della molla. La forza F esercitata sulla massa m quando la deformazione è x vale F = −k x dove k è la costante elastica della molla L’energia potenziale è data dalla formula: U(x) − U(0) = (−kx) dx Se scegliamo U(0) = 0 , l’energia potenziale, come pure la forza, è nulla nella posizione di riposo della molla e risulta: U(x) − U(0) = (−kx) dx = ½ kx2 (metodo grafico delle aree) x x

54 Sistemi conservativi a 2 e 3 dimensioni
Tutto quanto abbiamo discusso fino adesso per il caso unidimensionale, in cui la forza era orientata lungo la direzione del moto si può facilmente generalizzare al caso di un moto in più dimensioni. L’ipotesi che stiamo considerando è comunque quella in cui il lavoro fatto da una data forza F dipende soltanto dai punti estremi del moto del percorso. In questo caso la forza in questione è una forza conservativa.

55 ½ mvx2 + ½ mvy2 + ½ mvz2 + U(x,y,z) = E
In questo caso, l’energia potenziale U sarà una funzione delle coordinate x,y, z dello spazio in cui avviene il moto , e cioè U = U(x,y,z) E di nuovo troveremo che l’energia meccanica è conservata: K + U = E = costante Cioè: ½ mvx2 + ½ mvy2 + ½ mvz2 + U(x,y,z) = E

56 Forze non conservative
Ricapitoliamo: Partendo dal teorema lavoro-energia: L = ΔK abbiamo trovato che quando la risultante F delle forze è conservativa, il lavoro fatto può essere espresso come diminuzione dell’energia potenziale: −ΔU = ΔK Questo ci ha condotto all’idea della conservazione dell’energia cinetica + energia potenziale, cioè: ΔK + ΔU = 0 Δ(K + U) = 0 K + U = costante Abbiamo chiamato questa costante E, energia meccanica totale del sistema

57 Lconserv + Lnon-conserv = ΔK
Supponiamo adesso che fra le forze agenti sulla massa in questione ve ne siano alcune non conservative. Il lavoro fatto dalla risultante delle forze sarà uguale alla somma del lavoro fatto dalle forze conservative e da quelle non conservative: In base al teorema lavoro-energia, potremo quindi scrivere sempre: Lconserv + Lnon-conserv = ΔK D’altra parte, il lavoro fatto dalle forze conservative può essere scritto come diminuzione dell’energia potenziale: Lconserv = −ΔU Da cui: Lnon-conserv = ΔK + ΔU E cioè: Lnon-conserv = Δ(K + U) = ΔE

58 Lnon-conserv = Δ(K + U) = ΔE
Quindi: in presenza di forze non conservative, l’energia meccanica totale E di un sistema non è costante, ma cambia di un ammontare pari al lavoro effettuato dalle forze non conservative. Nel caso della forza dissipativa come la forza d’attrito, cosa ne è stato dell’energia meccanica totale ? In questo caso, l’energia meccanica si è trasformata in calore, e risulta che l’energia termica sviluppata è esattamente eguale alla energia meccanica dissipata

59 La conservazione dell’energia
Abbiamo visto che nel caso di forze non conservative risulta che il teorema lavoro energia può essere scritto come segue: Lnon-conserv = ΔK + ΔU In generale la formulazione più corretta sarà: Lnon-conserv = ΔK + ∑ ΔU dove il simbolo di sommatoria si riferisce ai contributi di energia potenziale di tutte le forze conservative presenti. Allo stesso tempo, possono essere presenti diverse forze non conservative, di cui la forza di attrito che abbiamo visto che sviluppa energia termica è solo un esempio.

60 L’energia totale di un sistema, come risulta dalla somma
Una importante affermazione, che fino adesso non è stata mai contraddetta dai risultati sperimentali è la seguente: L’energia totale di un sistema, come risulta dalla somma dell’energia cinetica, dell’energia potenziale, dell’energia termica e di altre forme di energia, non cambia

61 Alcune considerazioni:
Abbiamo iniziato l’approccio alla conservazione dell’energia parlando della conservazione dell’energia meccanica K+U. Poi abbiamo scoperto che l’energia meccanica si conserva solo nel caso di forze conservative. Per esempio nel caso di forze d’attrito, l’energia meccanica non si conserva ma viene dissipata in energia termica Adesso abbiamo affermato che l’energia totale di un sistema, come risulta dalla somma dell’energia cinetica, dell’energia potenziale, dell’energia termica e di altre forme di energia, non cambia

62 Di fatto è l’esperienza che ci conferma la veridicità del teorema.
Sembra quasi che si voglia rincorrere assolutamente un teorema (la conservazione dell’energia, appunto) invocando eventuali altre forme di energia, laddove apparentemente l’energia non si sarebbe conservata. Di fatto è l’esperienza che ci conferma la veridicità del teorema.

63 Esempio 1 Un blocco di massa m scivola lungo una superficie curva priva di attrito come in figura. In ogni istante, la forza normale N risulta perpendicolare alla superficie e quindi alla direzione del moto e pertanto NON esegue lavoro. Soltanto la forza gravitazionale compie lavoro e questa forza è conservativa. Pertanto l’energia meccanica si conserva e scriveremo: mgy1 + ½ mv12 = mgy2 + ½ mv22 Da cui si ricava: v22 = v g (y2 – y1) Se il blocco inizialmente è a riposo ad una quota y = h, si ha quindi: v2 = (2 g h)½

64 Esempio 2 Supponiamo di disporre di una molla con costante elastica k = 800 nt/m, posizionata come in figura. Supponiamo di comprimere la molla di 0,05 m rispetto alla posizione di equilibrio e di porre davanti la molla un biglia di 0,02 kg. Facendo l’ipotesi che la superfice orizzontale sia priva di attrito, con quale velocità la palla si distaccherà dalla molla ?

65 Trattandosi di una forza conservativa (la forza esercitata dalla molla), l’energia
meccanica si conserva. L’energia meccanica iniziale è l’energia potenziale della molla: ½ k x2 L’energia meccanica finale è l’energia cinetica della biglia: ½ mv2 Pertanto scriveremo : ½ k x2 = ½ mv2 Da cui risulta: v = x (k/m)1/2 = 0,05m x ((800 nt/m)/0,02 kg)1/2 v = 10 m/s

66 Esempio 3 Consideriamo un pendolo semplice. Il moto si svolge nel piano x-y, si tratta cioè di un moto bidimensionale. La tensione del filo è sempre perpendicolare alla traiettoria della massa m per cui tale forza non compie lavoro. Se il pendolo viene spostato di un angolo θ dalla sua posizione di equilibrio e poi lasciato libero, soltanto la forza gravitazionale compie lavoro sulla massa m. Poiché si tratta di una forza conservativa, possiamo applicare la legge di conservazione dell’energia in due dimensioni e scrivere: ½ mvx2 + ½ mvy2 + U(x,y) = E y x

67 ½ mvx2 + ½ mvy2 + U(x,y) = E Possiamo porre: vx2 + vy2 = v dove v è la velocità lungo l’arco Inoltre U = m g y dove l’origine dell’asse y coincide col punto più basso Quindi: ½ mv2 + m g y = E Quando posizioniamo la massa ad un angolo θ ed un’altezza h, la sua energia cinetica è nulla, quindi: E = m g h In ogni punto sarà quindi: ½ mv2 + m g y = m g h  ½ mv2 = m g (h –y) Quindi la velocità massima si ha per y = 0 ed è v = (2 g h)1/2 La velocità minima risulta in y = h dove v = 0

68 = (10kg) (9,8 m/s2) (2m) (cos 60°) = 98 joule
Esempio 4 Un blocco di 10 kg viene lanciato in salita lungo un piano inclinato di 30° con una velocità inziale di 5 m/s. Il blocco percorre 2 m, si ferma e poi ritorna alla base. Quesito: Calcolare la velocità con cui il blocco ritorna alla base, e la forza d’attrito f. Quando siamo alla sommità del moto, l’energia cinetica è zero, mentre l’energia potenziale è data dal lavoro esercitato contro la forza di gravità, a scapito appunto dell’energia cinetica. U = m g h = = (10kg) (9,8 m/s2) (2m) (cos 60°) = 98 joule 2 m 30° Alla base, dove il moto è iniziato è U = 0 mentre l’energia cinetica era K = ½ m v2 = ½ (10kg) (5 m/s)2 = = 125 joule

69 = (10kg) (9,8 m/s2) (2m) (cos 60°) = 98 joule
Esempio 4 Un blocco di 10 kg viene lanciato in salita lungo un piano inclinato di 30° con una velocità inziale di 5 m/s. Il blocco percorre 2 m, si ferma e poi ritorna alla base. Quesito: Calcolare la velocità con cui il blocco ritorna alla base, e la forza d’attrito f. Quando siamo alla sommità del moto, l’energia cinetica è zero, mentre l’energia potenziale è data dal lavoro esercitato contro la forza di gravità, a scapito appunto dell’energia cinetica. U = m g h = = (10kg) (9,8 m/s2) (2m) (cos 60°) = 98 joule 2 m 30° Alla base, dove il moto è iniziato è U = 0 mentre l’energia cinetica era K = ½ m v2 = ½ (10kg) (5 m/s)2 = = 125 joule

70 98 joule − 125 joule = −f x 2 m U = 98 joule
Risulta una differenza netta di energia di 98 joule − 125 joule = −f x 2 m da cui risulta: f = 27 joule / 2 m = 13,5 nt Consideriamo adesso la discesa. Alla sommità avevamo: U = 98 joule La perdita di energia cinetica dovuta all’attrito durante la discesa sarà sempre 27 joule, per cui l’energia cinetica all’arrivo sarà 98 – 27 = 71 joule Da cui ½ m v2= 71 joule  v = (71 x 2 / 10kg)1/2 = 3,7 m/s

71 Riassumendo: La massa parte con una velocità in salita di 5 m/s Ritorna al punto di partenza con una velocità di 3,7 m/s Questo è dovuto alla perdita netta di energia, che si è trasformata in calore a causa dell’attrito sia in andata che in ritorno. Pertanto se quando la massa torna al punto di partenza trova una molla che semplicemente le inverte il moto, risalirebbe ma percorrendo una distanza minore, e arriverebbe al punto di partenza con una velocità sempre più bassa, fino a fermarsi.


Scaricare ppt "Avviare la presentazione col tasto “Invio”"

Presentazioni simili


Annunci Google