La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

MARUEEB Erasmus+ CBHE project E-JP

Presentazioni simili


Presentazione sul tema: "MARUEEB Erasmus+ CBHE project E-JP"— Transcript della presentazione:

1 MARUEEB Erasmus+ CBHE project E-JP THE DESIGN OF BUILDING ENVELOPES FOR ENERGY EFFICIENT BUILDINGS USING SIP TECHNOLOGY FINAL PROJECT Questo modello può essere utilizzato come file iniziale per la presentazione di materiale didattico per la formazione in gruppo. Sezioni Fare clic con il pulsante destro del mouse su una diapositiva per aggiungere sezioni. Le sezioni possono essere utili per organizzare le diapositive o agevolare la collaborazione tra più autori. Note Utilizzare la sezione Note per indicazioni sull'esecuzione della presentazione oppure per fornire informazioni aggiuntive per il pubblico. Mostrare queste note nella visualizzazione Presentazione durante la presentazione. Valutare con attenzione le dimensioni dei caratteri, importanti per l'accessibilità, la visibilità, la registrazione video e la produzione online. Colori coordinati Prestare particolare attenzione ai grafici, ai diagrammi e alle caselle di testo. Tenere presente che i partecipanti eseguiranno la stampa in bianco e nero o in gradazioni di grigio. Eseguire una stampa di prova per assicurarsi che i colori risultino comunque efficaci e chiari in una stampa in solo bianco e nero e in gradazioni di grigio. Grafica, tabelle e grafici Scegliere la semplicità: se possibile utilizzare stili e colori coerenti, che non rappresentino elementi di distrazione. Assegnare un'etichetta a tutti i grafici e a tutte le tabelle. Student - Mamontov Semen Supervisor - Prof. Monastyrev Pavel St. Petersburg, 18th September 2017

2 Aims and Objectives of project
To show that optimal insulation thickness of SIP panel in region with a big snow load should be chosen after mechanical, thermal and economical calculations. In that case the SIP panel will have a higher strength, stiffness, thermal resistance and minimal payback period. Objectives To investigate the mechanical behavior of SIP panel; To investigate the thermal behavior of SIP panel; To explore impact of thermal insulation thickness on payback period of SIP panel.

3 What is the SIP ? The panel is sandwich structures which consist of two strong, thin facings and a soft lightweight thicker core. The structure and materials of the SIP The panel with a OSB facings and EPS core

4 How does SIP work? A sandwich panel works like an “I” beam. Facings carry the compressive and tensile stresses. The core resists shear and provides bending stiffness. The core also supports the facings against buckling. σf - bending stresses in facings σc - bending stresses in core τ f - shear stresses in facings τ c - shear stresses in core The stress distribution in a sandwich beam

5 Advantages and Disadvantages of SIP
Reduction of the construction process period Independence of construction on season Reduction of installation costs High strength and heat insulating qualities Durability and maintainability Disadvantages Low moisture resistance Possibility of overheating Requires good ventilation or installation of air conditioning

6 Limiting thermal bridges
Typical panel-to-panel joints Dimensional lumber spline Surface spline Block spline connection

7 Example of the SIP connections
Foundation connections Second floor connection details Roof- to- roof panel connections Corner wall connection

8 The Design of Structure Insulated Panel
To define the insulation thickness of the roof SIP. The construction area is Petropavlovsk-Kamchatsky. The roof is roll. It consists of 3 layers of roofing material and gravel protection. The panel width b is equal 1.25 m. It consists of 2 plywood facings with thickness δ = 10 mm. and the EPS insulation core with a density γ = 25 kg/m3. The panel is based on beams, witch located with span l = 2.5 m. Calculation of insulation thickness is necessary to carry out by conditions of ensuring the strength, stiffness and the required thermal resistance of the building envelope. Plywood sheathing EPS layer δ = 10 mm b = 1,25 m l = 2,5 m c - ?

9 Available data The external and internal climatic data
The physical and mechanical properties of panel components The value of load

10 Discussion and decision scheme
Operational load on the SIP Mechanical Thermal Static calculation Thermal calculation - the normal (bending) stress - the design thermal resistance (factual) - the shear stress - the required thermal resistance - the deflection - heating degree-day

11 Static calculation results
Mechanical work of loaded panel Static scheme of panel q+S =6,39, kN/m Mmax = 0,125ql2 М, kN∙m Q, kN Qmax = 0,5ql Tc Tt

12 Thermal calculation results
R0 > Rreq c ≥ 200 mm slide # 12

13 Calculation curve results
The bending stresses The shear stresses The deflection The thermal resistance The insulation thickness c must be > 200 mm

14 Economic calculation I1 + C1 ∙T = I2 + C2 ∙T
The estimation of predict payback period is provided using the method of the resulted costs* Investment I and operational cost C BEFORE insulation Investment I and operational cost C AFTER insulation I1 + C1 ∙T = I2 + C2 ∙T BUT ! It doesn’t take into account growth of rates for heat energy r and discounting of future cash flows i The payback period: Therefore, the payback period will be determined by the next equation*: r = 8,2% - the average annual growth of rates for thermal energy; i = 9% - the interest rate discount. Pr = RUB/Gcal - the tariff price for thermal energy in Petropavlovsk-Kamchatsky city in 2017 - the difference between the operating costs, taking into account heat losses through external walls before and after insulation for one heating season, RUB/year * P.A. Muravjev, M.A. Lunina-Lebedeva, A.V. Taranin, A.S. Gorshkov. Evaluation of cost-effective thermal resistance of external walls. The magazine "Evro STROJJ Profi", special issue «Energy efficiency, energy conservation, ecology – 2017», Publishing house "Evro STROJJ Profi", p.2-11.

15 Payback period results
T ≈ 21 years c = 300 mm

16 Conclusion The calculation method Economic calculation Shear strength calculation Thermal calculation Deflection calculation The thickness of the heat insulation must be 300 mm. In this case the strength, stiffness and thermal resistance of the panel operated in Petropavlovsk-Kamchatsky city is sufficient, and we have the minimum payback period equal to 21 years.

17 Thank you very much for your attention!
For additional info:


Scaricare ppt "MARUEEB Erasmus+ CBHE project E-JP"

Presentazioni simili


Annunci Google