Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
PRIMITIVA DI UNA FUNZIONE O INTEGRALE INDEFINITO
1. DEFINIZIONE DI PRIMITIVA DI UNA FUNZIONE 2. L'INSIEME INFINITO DELLE PRIMITIVE 3. INTEGRALI INDEFINITI IMMEDIATI E FONDAMENTALI 4. PROPRIETA' DI LINEARITA' DELL'INTEGRALE INDEFINITO 5. ALCUNI IMPORTANTI METODI DI INTEGRAZIONE a. Integrazione per sostituzione b. metodo “per parti” c. Integrazione delle funzioni razionali fratte
2
1. DEFINIZIONE DI PRIMITIVA DI UNA FUNZIONE
Definizione: data una funzione f(x), definita in un intervallo I R, diciamo che una funzione F(x) definita pure in I, è primitiva della funzione f(x) sull'intervallo I, se F(x) è derivabile in I, con F'(x) = f(x) , x I e si scrive: Si legge: integrale indefinito della f(x) in dx ; f(x) è la funzione integranda e dx è il differenziale della variabile indipendente x.
3
2. L'INSIEME INFINITO DELLE PRIMITIVE
Teorema : se F(x) e G(x) sono due primitive di f(x) sull'intervallo I, allora esiste una costante c R tale che F(x) = G(x) + c x ( F(x) - G(x) = c ). Teorema: una funzione f(x) continua nell'intervallo I, ammette primitiva in tale intervallo.
4
3. INTEGRALI INDEFINITI IMMEDIATI E FONDAMENTALI
5
4. PROPRIETA' DI LINEARITA' DELL'INTEGRALE DEFINITO
6
5.a INTEGRAZIONE PER SOSTITUZIONE 1° CASO
9
INTEGRAZIONE PER SOSTITUZIONE 2° CASO
11
INTEGRAZIONE PER SOSTITUZIONE 3° CASO
12
5.b INTEGRAZIONE PER PARTI
14
5.c INTEGRAZIONE DELLE FUNZIONI RAZIONALI FRATTE
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.