Scaricare la presentazione
PubblicatoAgostino Spano Modificato 11 anni fa
1
Simmetria Traslazioni (Lattices) Traslazione 1-D = un filare
Proprietà a scala atomica, non della forma cristallina Traslazioni simmetriche riguardano distanze ripetute L’origine è arbitraria Traslazione 1-D = un filare
2
Simmetria Traslazioni (Lattices) Traslazione 1-D = un filare
Proprietà a scala atomica, non della forma cristallina Traslazioni simmetriche riguardano distanze ripetute L’origine è arbitraria Traslazione 1-D = un filare a a è il vettore che si ripete
3
Traslazioni (Lattices) Traslazioni 2-D = una maglia
Simmetria Traslazioni (Lattices) Traslazioni 2-D = una maglia
4
Traslazioni (Lattices) Traslazioni 2-D = una maglia
Simmetria Traslazioni (Lattices) Traslazioni 2-D = una maglia Cella unitaria Cella unitaria: L’unità base che, ripetuta solo per traslazione, genera l’intero pattern Come si differenzia dal motivo ??
5
Traslazioni (Lattices) Traslazioni 2-D = una maglia
Simmetria Traslazioni (Lattices) Traslazioni 2-D = una maglia b a Scegliere un punto qualsiasi Ogni punto a esattamente n ripetizioni da quel punto è un equipunto rispetto all’originale
6
Traslazioni Esercizio: Stampe di Escher 1. Qual’è il motivo ?
2. Scegliere un punto qualsiasi e marcarlo con un segno nero 3. Segnare gli equipunti nello stesso modo 4. Evidenziare la cella unitaria basata sugli equipunti 5. Qual’è il contenuto della cella unitaria (Z) ?? Z = numero di motivi per cella unitaria Z è sempre un numero intero ?
7
Traslazioni Quale cella unitaria è corretta ?? Convenzioni:
1. I bordi delle celle dovrebbero, quando possibile, coincidere con assi di simmetria o piano di simmetria 2. Se possibile, I bordi dovrebbero essere in relazione con simmetrie traslazionali. 3. La cella più piccola (cella ridotta) che soddisfa I requisiti 1 e 2 dovrebbe essere scelta
8
Traslazioni The lattice and point group symmetry interrelate, because both are properties of the overall symmetry pattern
9
Traslazioni The lattice and point group symmetry interrelate, because both are properties of the overall symmetry pattern Buona scelta di cella unitaria. Perchè? Quant’è Z? Ci sono altri elementi di simmetria ?
10
Traslazioni The lattice and point group symmetry interrelate, because both are properties of the overall symmetry pattern Questo spiega perchè assi di simmetria 5-fold e > 6-fold non esistono nei cristalli
11
Traslazioni Vediamo ora nuovi operatori di simmetria 2-D, considerando le traslazioni Lo Slittopiano: Una combinazione di riflessione e traslazione ripeti Passo 2: traslazione Passo 1: riflessione (posizione temporanea)
12
Traslazioni Vi sono 5 uniche maglie 2-D.
13
Traslazioni Vi sono 5 uniche maglie 2-D.
Maglia obliqua Maglia rettangolare P p2mm b a Maglia rombica = g 90 o , 120 , 60 1 2 Maglia esagonale = a = 60 p6mm Maglia rettang- Maglia quadrata a b b olare C a = a a 1 2 g g 90 = 90 o g = 90 o a b o g = 90 o b a 2 b a g g g a a a 1 p2 p2mm p4mm Ci sono anche 17 Gruppi Planari 2-D che combinano la traslazione con operazioni di simmetria compatibili. La parte di sotto dell’immagine riporta esempidi gruppi Planari che corrispondonoa ciascun tipo di maglia
14
Simmetria dei Gruppi Planari
Combina le traslazioni ed i gruppi puntuali
15
Simmetria dei Gruppi Planari
17
p3
19
p4gm
20
Tridimite: Cella ortorombica C
21
Traslazioni 3-D e Lattices
Modalità differenti di combinare 3 assi non-paralleli e non-coplanari In effetti si tratta di combinare le traslazioni compatibili con i 32 3-D gruppi puntuali (o classi cristalline) 32 Gruppi Puntuali ricadono in 6 categorie
22
Traslazioni 3-D e Lattices
Modalità differenti di combinare 3 assi non-paralleli e non-coplanari In effetti si tratta di combinare le traslazioni compatibili con i 32 3-D gruppi puntuali (o classi cristalline) 32 Gruppi Puntuali ricadono in 6 categorie +c Tipologie 3-D Lattice Nome assi angoli +a b Triclino a b c a ¹ b ¹ g 90 o Monoclino a b c a = g = 90 o b ¹ 90 o g a Ortorombico a b c a = b = g = 90 o Tetragonale a = a c a = b = g = 90 o 1 2 Esagonale +b Esagonale (4 assi) a = a = a c b = 90 o g = 120 o 1 2 3 Romboedrico a = a = a a = b = g o Convenzione : “legge della mano destra” 1 2 3 90 Cubico a = a = a a = b = g = 90 o 1 2 3
23
P P I = C P C F I a b Triclino ¹ b ¹ g ¹ c a b c Monoclino a = g = 90
Ortorombico a = b = g = 90 o C F I There are also several non-primitive lattice choices P = Primitive C = C-face Centered F = all-Face centered I = body-centered One might expect that each choice is possible for every lattice type, but not so. Why not ?
24
P I P C R P F I or a c Tetragonale a = b = g = 90 = a ¹ a c Esagonale
1 c P Tetragonale a = b = g = 90 o = a 2 I a 1 c P or C 2 R Esagonale Romboedrico a = b = 90 o g = 120 o a = b = g 90 o a = a c a = a = a 1 2 1 2 3 a 1 3 P Cubico a = b = g = 90 o = a 2 F I There are also several non-primitive lattice choices P = Primitive C = C-face Centered F = all-Face centered I = body-centered One might expect that each choice is possible for every lattice type, but not so. Why not ?
25
Traslazioni 3-D e Lattices
Triclino: No symmetry constraints. Nessun motivo per scegliere C quando si può scegliere P Per convenzione, tutti i mineralogisti fanno lo stesso Ortorombico: Perchè C e non A o B? Se ho A o B, semplicemente rinominare gli assi C
26
Traslazioni 3-D e Lattices
Per visualizzare il resto, conviene farlo con le proiezioni Se lo si guarda dalla prospettiva frontale ? 2/ /3 = altezza verso l’osservatore
27
Traslazioni 3-D e Lattices
Per visualizzare il resto, conviene farlo con le proiezioni Se lo si guarda dalla prospettiva frontale ? 2/ /3 = altezza verso l’osservatore 1 2/3 1/3
28
Traslazioni 3-D e Lattices
= 0, 1, 2... = 0.5, 1.5, Cos’è questa? = Cella I cubica o tetragonale (dipende dalla scala verticale)
29
Traslazioni 3-D e Lattices
= 0, 1, 2... = 0.5, 1.5, Cos’è questa? Non è possibile. Perchè ? Non è una cella.
30
Traslazioni 3-D e Lattices
b = 0, 1, 2... a La cella tetragonale riporta solo P e I, ma questa è C Perchè C non viene riportata ? E’ una cella tetragonale valida ? Si.
31
Traslazioni 3-D e Lattices
b = 0, 1, 2... a Possiamo scegliere una cella P primitiva dallo stesso pattern C e P sono equivalenti Per convenzione, scegliamo P Tetragonale A? B? The others work the same way: Exclusions are either incompatible with the system or equivalent to one of the types listed
32
Traslazioni 3-D e Lattices
You can read conventions for axial choices for each system on pages of your text
33
Gruppi Spaziali 3-D Come per i 7 2-D Gruppi Planari, le simmetrie dei gruppi puntuali 3-D possono essere combinate con le traslazioni per creare i 230 Gruppi Spaziali Anche in 2-D ci sono nuovi elementi di simmetria che combinano la traslazione con altre operazioni Slittopiani: Riflessione + traslazione 4 tipi. Fig in Klein e Hurlbut Elicogire: Rotazione + traslazione Fig in Klein e Hurlbut
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.