La presentazione è in caricamento. Aspetta per favore

La presentazione è in caricamento. Aspetta per favore

Introduzione alla fisica

Presentazioni simili


Presentazione sul tema: "Introduzione alla fisica"— Transcript della presentazione:

1 Introduzione alla fisica
Grandezze fisiche Misura ed errori di misura. Unità di misura

2 La fisica come scienza sperimentale
Studio di un fenomeno OSSERVAZIONI SPERIMENTALI MISURA DI GRANDEZZE FISICHE LEGGI FISICHE IPOTESI VERIFICA Relazioni matematiche tra grandezze fisiche In fisica si usa un linguaggio matematico !!!

3 Grandezze fisiche Numero + unità di misura
Definizione operativa di una grandezza fisica: Una grandezza fisica è definita quantitativamente attraverso un metodo operativo di misura, che permetta il confronto tra la grandezza in esame e una grandezza omogenea di riferimento (campione) Espressione di una grandezza fisica: Numero + unità di misura Rapporto tra la grandezza e il campione di riferimento Misura diretta: Confronto diretto con il campione (es. misura di lunghezza con un metro graduato) Misura indiretta: Misura di una grandezza legata a quella da misurare attraverso una relazione nota (es. misura di tempo con una clessidra)

4 Grandezze fisiche fondamentali e unità di misura
Tutte le grandezze fisiche possono essere espresse in funzione di un insieme limitato di grandezze fondamentali Un sistema di unità di misura definisce le grandezze fisiche fondamentali e i corrispondenti campioni unitari (unità di misura) Sistema Internazionale (S.I.) Grandezza fisica Unità di misura Lunghezza [L] metro (m) Tempo [t] secondo (s) Massa [M] chilogrammo (kg) Intensità di corrente [i] ampere (A) Temperatura assoluta [T] grado Kelvin (K)

5 Grandezze fisiche derivate
Le rimanenti grandezze fisiche sono derivate a partire dalle grandezze fondamentali mediante relazioni analitiche Alcuni esempi: Superficie (lunghezza) [L]2 m2 Volume (lunghezza) [L]3 m3 Velocità (lunghezza/tempo) [L][t]-1 m·s-1 Accelerazione (velocità/tempo) [L][t]-2 m·s-2 Forza (massa*accelerazione) [M][L][t]-2 kg·m·s-2 Densità (massa/volume) [M][L]-3 kg·m-3 Pressione (forza/superficie) [M][L]-1[t]-2 kg·m-2·s-2

6 Errori di misura La misura di una grandezza fisica è sempre affetta da errore Errore: stima di quanto la grandezza misurata si discosta dal valore “vero” Limiti strumentali: Uno strumento permette la misura della grandezza con un’incertezza legata alla sua sensibilità Errori casuali (statistici): Strumenti di alta sensibilità forniscono risultati differenti su misure ripetute, a causa di perturbazioni ed effetti accidentali di cui l’osservatore non può tenere conto. Errori casuali avvengono sia in eccesso sia in difetto rispetto al valore vero Errori sistematici: Avvengono sempre o in eccesso o in difetto rispetto al valore vero. Sono causati da errori di misura, da strumenti mal tarati, dall’uso di modelli errati o da perturbazioni importanti di cui non si è tenuto conto

7 Istogramma delle frequenze
Istogramma delle frequenze per la rappresentazione di misure ripetute l1, l2, l3, l4, ..... Esempio: Misura di una lunghezza l1 2,15 cm l2 2,14 cm l3 2,16 cm l4 2,12 cm l5 l6 l7 2,13 cm l8 l9 2,17 cm l10 l11 2,15 cm l12 2,16 cm l13 2,14 cm l14 l15 l16 l17 l18 l19 2,13 cm l20 7 Numero di misure 6 5 4 3 2 1 2,12 2,13 2,14 2,15 2,16 2,17 2,18 cm

8 Valore medio e deviazione standard
Valor medio: Scarto quadratico medio (deviazione standard): l 7 Nel nostro esempio: Numero di misure 6 l = 2,146 cm  = 0,012 cm 5 l- l+ 4 3 Approssimando: 2 1 l = l ±  = (2,15 ± 0,01) cm 2,12 2,13 2,14 2,15 2,16 2,17 2,18 cm

9 Distribuzione gaussiana
L’istogramma di frequenze di un numero elevato di misure ripetute affette solo da errori casuali segue una curva tipica a campana (distribuzione gaussiana) (~68% dell’area sotto la curva) (~95%) (~99%) l-2 l+2 l l-3 l+3 l- l+ Distribuzione stretta  piccola errore piccolo Distribuzione larga  grande errore grande

10 Data una misura espressa nella forma:
Errore percentuale Data una misura espressa nella forma: Errore percentuale: (adimenzionale!) Esempi: m = 1 kg ± 10 g = (1 ± 0,01) kg m = 100 kg ± 100 g = (100 ± 0,1) kg Nota: In mancanza di errore questo si intende sull’ultima cifra significativa! l = 6,8 m  l = (6,8±0,1) m l = 6,80 m  l = (6,80±0,01) m

11 Grandezze scalari e vettoriali
Grandezze scalari: caratterizzate da un numero Es: tempo, temperatura, massa Grandezze vettoriali: caratterizzate da un modulo, una direzione e un verso. Es: spostamento, velocità, accelerazione direzione modulo del vettore v : v = | v | Es: |v| = 100 m/s verso modulo v punto di applicazione Vettori uguali Vettori opposti

12 Prodotto scalare a•b = |a||b|cos  = |a|b' b b' = |b|cos  : a b' Es.:
componente di b lungo a a b' Es.:  = 0o a  b = ab cos f = ab a b  = 90° a b a  b = ab cos  = 0  = 180° a  b = ab cos  = – ab a b

13 Prodotto vettoriale c = a  b |c| = |a||b|sen  = |a|b” c b b"
Modulo di c : |c| = |a||b|sen  = |a|b” b’’: componente di b ortogonale ad a a b” Direzione di c: ortogonale ad a e b Verso di c: verso di avanzamento di una vite che ruota sovrapponendo a su b


Scaricare ppt "Introduzione alla fisica"

Presentazioni simili


Annunci Google