Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoNunziatina Basso Modificato 10 anni fa
1
Università di Roma III 27 Gennaio 2003 L.Ludovici INFN Roma I Prospettive Sperimentali della Fisica delle Oscillazioni di Neutrini Scenario attuale LCPV - Factory 13 – Superbeam Presente Futuro Remoto Futuro Prossimo
2
2 Short Abstract... Long-term goal: Leptonic CPV at the Factory Uncertain perspective: technology, cost, physics. Mid-term goal: 13 discovery LMA ? 13 large? CPV already found ? Factory Doubtful... Only if Coll
3
3 500+ Cited papers 1990-2002 1.EVIDENCE FOR OSCILLATION OF ATMOSPHERIC NEUTRINOS Super-Kamiokande Collaboration (Y. Fukuda et al.). Phys.Rev.Lett.81:1562 (1998) hep-ex/98070031597 2.OBSERVATION OF TOP QUARK PRODUCTION IN ANTI-P P COLLISIONS CDF Collaboration (F. Abe et al.). Phys.Rev.Lett.74:2626 (1995) hep-ex/9503002 919 3.OBSERVATION OF THE TOP QUARK. D0 Collaboration (S. Abachi et al.). Phys.Rev.Lett.74:2632 (1995) hep-ex/9503003 878 4.ATMOSPHERIC / e RATIO IN THE MULTIGEV ENERGY RANGE Kamiokande Collaboration (Y. Fukuda et al.). Phys.Lett.B335:237 (1994) 729 5. INITIAL RESULTS FROM THE CHOOZ LONG BASELINE REACTOR NEUTRINO OSCILLATION EXPERIMENT. CHOOZ Collaboration (M. Apollonio et al.). Phys.Lett.B420:397 (1998) hep-ex/9711002 659 6.OBSERVATION OF A SMALL ATMOSPHERIC / e RATIO IN KAMIOKANDE. Kamiokande-II Collaboration (K.S. Hirata et al.). Phys.Lett.B280:146 (1992) 613 7.FIRST MEASUREMENT OF THE RATE FOR THE INCLUSIVE RADIATIVE PENGUIN DECAY b s. CLEO Collaboration (M.S. Alam et al.). Phys.Rev.Lett.74:2885 (1995)611 8.LIMITS ON NEUTRINO OSCILLATIONS FROM THE CHOOZ EXPERIMENT. CHOOZ Collaboration (M. Apollonio et al.). Phys.Lett.B466:415 (1999) hep-ex/9907037 578 9.EVIDENCE FOR e OSCILLATIONS FROM THE LSND EXPERIMENT AT LAMPF. LSND Collaboration (C. Athanassopoulos et al.). Phys.Rev.Lett.77:3082 (1996) nucl-ex/9605003 553 10.EVIDENCE FOR TOP QUARK PRODUCTION IN p p COLLISIONS AT S 1/2 = 1.8-TeV. CDF Collaboration (F. Abe et al.). Phys.Rev.D50:2966 (1994) 544 11.MEASUREMENT OF A SMALL ATMOSPHERIC MUON-NEUTRINO / ELECTRON-NEUTRINO RATIO. Super-Kamiokande Collaboration (Y. Fukuda et al.).Phys.Lett.B433:9 (1998) hep-ex/9803006 534 12.MEASUREMENT OF THE RATE OF e + d p + p + e- INTERACTIONS PRODUCED BY B 8 SOLAR NEUTRINOS AT THE SUDBURY NEUTRINO OBSERVATORY. SNO Collaboration (Q.R. Ahmad et al.). Phys.Rev.Lett.87:071301 (2001) nucl-ex/0106015 525 13.STUDY OF THE ATMOSPHERIC NEUTRINO FLUX IN THE MULTI-GEV ENERGY RANGE. Super-Kamiokande Collaboration (Y. Fukuda et al.). Phys.Lett.B436:33 (1998) hep-ex/9805006 525 14.MEASUREMENT OF THE SOLAR ELECTRON NEUTRINO FLUX WITH THE HOMESTAKE CHLORINE DETECTOR. Bruce T. Cleveland et al. Astrophys.J.496:505 (1998) 524 15.THE e AND CONTENT OF THE ATMOSPHERIC FLUX. R. Becker-Szendy et al (IMB Coll.) Phys.Rev.D46:3720 (1992) 521
4
4 Present evidences of neutrino mass and mixing e, with m 2 10 -4 eV 2, almost (not fully) maximal mixing. and/or NC appearance from the Sun in SNO. 2.Lab Test: reactor e disappearance at L 200Km in Kamland (4.6 ) with m 2 = (1.6 3.9). 10 -3 eV 2, sin 2 2 > 0.92 at 90%CL 1.Super-K upward-going atmospheric disappearance. 2.Most likely from o and matter effects in Super-K (2÷3 ) 3.Lab Test: disappearance in accelerator from K2K-I (2÷3 ) e with m 2 ~ 0.1 eV 2 1.LSND claimed evidence of neutrino oscillation. 2.Unseen by KARMEN with marginal sensitivity 3.Controversy to be solved by Mini-BooNE (results in 2004-5)
5
5 1 0 0 0 C 23 S 23 0 -S 23 C 23 C 13 0 S 13 e i 0 1 0 -S 13 e -i 0 C 13 C 12 S 12 0 -S 12 C 12 0 0 0 1 U = U A. U 13. U S = 3 neutrinos 2 mass differences, 3 angles and 1 CP phase m 2 12 m 2 23 12 23 13 atmospheric solar ?? The Mixing Matrix e = U i 1 2 3 pure flavour eigenstate back to flavour eigenstates each mass eigenstate takes a different phase jk = m 2 jk (eV 2 )L(Km)/E (GeV), W = U j U j U k U k P( ) = - 4 Re [ W ] sin 2 jk 2 Im [ W ] sin 2 jk ( ) jk k>j ( ) jk CP odd jk
6
6 Knowledge of mixing parameters Solar do mix. NC appearance in SNO Lab confirmation:claim of disappearance in KamLand Atmospheric disappear. Up/Down asymmetry in Super-K Lab confirmation:indication of disappearance in K2K e Negative result in CHOOZ m 2 23 = m 2 atm 1.6 4 10 -3 eV 2 m 2 12 = m 2 sun 10 -4 or 10 -4 eV 2 23 45 o 12 45 o 13 < 13 o No idea. <
7
7 For experiments at terrestrial baselines, with 12 <<1: P( e ) sin 2 2 13 sin 2 23 sin 2 23 = sin 2 2 e sin 2 23 P( ) cos 4 13 sin 2 2 23 sin 2 23 = sin 2 2 sin 2 23 P( e ) sin 2 2 13 cos 2 23 sin 2 23 = P( ) 1 – (sin 2 2 + sin 2 2 e ) sin 2 23 P( e e ) sin 2 2 13 sin 2 23 Only 3 parameters: 23 m 23 13 Reduce to two flavour mixings with effective mixing angles: sin 2 2 = cos 4 13 sin 2 2 23 sin 2 2 23 sin 2 2 e = sin 2 2 13 sin 2 23 0.5 sin 2 2 13 Effective Mixing Angles jk = m 2 jk (eV 2 )L(Km)/E (GeV), W = U j U j U k U k P( ) = - 4 Re [ W ] sin 2 jk 2 Im [ W ] sin 2 jk ( ) jk k>j ( ) jk CP odd jk
8
8 LCP Asymmetry Being 13 small, if m 2 12 is only 10 100 times smaller than m 2 23 (LMA): P( e ) sin 2 23 sin 2 2 13 sin 2 13 + + cos 2 23 sin 2 2 12 sin 2 12 + + J 12 sin 13 cos( - 13 ) J = cos 13 sin2 12 sin2 23 sin2 13 large large large ?? ( ) LCP asymmetry vanishes for small 13. atmospheric solar interference J determinant e gives the best opportunity for LCPV due to the suppression of the leading CP conserving contributions Discovery of non-zero 13 is a pre-requisite of any sensible experimental strategy to attack the difficult problem of LCPV.
9
9 -FactoryKosharev 1974 Wojcicki 1974 Collins 1975 Geer 1998 -colliderBudker 1969 Skrinski 1971 Neuffer 1979 SBL (100 1000 Km) LBL (1000 5000 Km) VLBL (1 2 R EARTH ) 10-1000kt Mass Detector SR e ( e ) + ( - ) ( ) Conventional pion beams are dominantly ( ) with a few percent contaminations of ( ) e e. Difficult to access all transitions and oscillation parameters are measured with uncertainty O(10%) while NuFact beams could allow O(1%) precision. E /m The Neutrino Factory Idea
10
10 E = 5,10,20,40 GeV L = 1000 Km e P. Lipari, hep-ph/0102046 Well known flux ( decay kinematic, polarisation) Clean beam composition: 1:1 + e (or + e ) Flux scales with N E 2 /L 2 Average neutrino energy scales with E Interaction rate scales with M DET N E 3 /L 2 (y) = 2y 2 (3-2y) (y) (1-y) e (y) = 12y 2 (1-y) (y) (1-y) dN E 2 N dydS m 2 L 2 =0 (y) Neutrino Factory Fluxes 0.67. 10 -38. E (GeV) cm 2 0.34. 10 -38. E (GeV) cm 2
11
11 2 possible ways:A e = A e = Earth is CP-odd. In LBL and VLBL experiments (L>1000 Km) the effects of propagation in matter are in general large and P( ) P( ) even if CP is conserved. P( e ) - P( e ) P( e ) + P( e ) P( e ) - P( e ) P( e ) + P( e ) CP T A CP at NuFact comparing wrong sign - in a beam from + with the charge conjugate process and beam. Need subtraction of matter induced CP effects (two detectors at different baselines). Need precise knowledge of the relative neutrino (anti-) cross-sections. A T free from matter induced effects but it requires the lepton ID and charge determination not only for muons but also for electrons, very difficult in practice in a large O(50Kt) detector. LCPV at the Factory
12
12 Roadmap NOW 2020 2010 2005 2015 K2K-II JHF ? Off-Axis HARP MICE ? Factory ? JHF-HK CNGS NuMI disappearance down to 1 o appearance NC/CC LCP violation down to 0.1 o LCP violation F R&D MiniBooNE LSND? KamLand m 2 12, 12 at 2%
13
13 JHF Physics Programme High intensity neutrino beam from JHF (0.75 MW) to Super-K (50kt) 1. Discovery of 13 down to sin 2 2 13 > 0.006 2. Precision measurement of sin 2 2 23 and m 2 23 3. Search for sterile components through NC interactions Phase I JHF upgrade to 4 MW power. Construction of Hyper-K (1Mt) 1. Discovery of 13 down to sin 2 2 13 > 0.001 2. Leptonic CP violation. down to 10-20 degrees if sin 2 2 13 > 0.01 Phase II
14
14 JHF facility Energy(GeV) Current( A) KEK-JAERI joint project JAERI@Tokai-mura, 295 Km from Super-K (60Km NE of KEK) Construction 2001-2007 Cost: 1335(1890) Oku Yen (1 Oku=10 8 ) JHFK2KNuMICNGS E(GeV) 5012120400 Intensity (10 12 ppp) 33064048 Rate (Hz) 0.290.450.53 0.10 Power (MW) 0.750.00520.410.3
15
15 Off-Axis neutrino Beams Horns Target Decay Pipe Detector BNL proposal E889 http://minos.phy.bnl.gov/nwg/papers/E889 E = m 2 – m 2 2 (E - p cos ) m 2 – m 2 m 2 (1 + 2 2 ) E E >>m, and <<1 Much higher flux than old-style NBB. Strong cut-off of HE tail. Reduced e contamination. Tune energy to maximise sensitivity = 1.27. m 2 (eV 2 ). L(Km) / E(GeV) Beam energy almost fixed by geometry = L 2 1 m E 2 (1 + 2 2 ) 2 1 L 2 1 (E - p cos ) 2 m 2
16
16 JHF Beam =1 o =2 o =3 o Beam steering angle 2.5 o 0.5 o. Tune energy between 0.4 and 1 GeV Best tuning to m 2 =(1.6 4). 10 -3 eV 2 BeamE peak Flux ( 10 6 /cm 2 /yr) e / (%) All, CC events (events/22.5kt/yr) e total @peak e OA2 o 0.719.20.191.000.213100 2200 60 45 OA3 o 0.5510.60.131.210.201100 800 29 22 3.3. 10 14 ppp at 0.285 Hz (0.75 MW, 2.64 MJ/pulse) 10 21 pot/yr in 130 days/yr SC proton transport line Carbon target Secondary pions focused by horns Decay pipe 130m length from target Near detector at 280m from target Intermediate detector at 1.5Km Super-K at 295 Km. (22.5 kt fiducial)
17
17 JHF Near Detectors Flux. L 2 @ Super-K Flux. L 2 @ 1.5 Km Flux. L 2 @ 0.28 Km Covers from 0 o to 3 o. Monitor the beam stability and flux. High rate: 60 events/kt/spill. Study and e interactions: CCQE, CC, NC. Non point-like source, different target, different detector technology: flux extrapolation to Super-K problem. Off-Axis as Super-K Water-Cherenkov (100t fiducial mass) to cancel most of the flux extrapolation syst. Spectrum differences < 10% 2% systematic due to e background subtraction. 60% difference Better than 10% Intermediate detector at 1.5 Km Near detector at 280 m
18
18 Detector at 1.5Km Conceptual design.
19
19 Far detector
20
20 Neutrino Energy Measure =80MeV Ereco - Etrue (MeV) Etrue (MeV) Ereco (MeV) non-QE background CCQE E rec = m n E l – m l 2 /2 m n – E l + P l cos l Almost exact (Fermi motion) for QE interactions: l n l p non-QE CC interactions of higher energy neutrinos background for disappearance Coherent o production from NC interactions of higher energy neutrinos is a background for e appearance
21
21 13 ( e appearance) CC NCBeam e Oscillated e Events in FV10713.64080.3292.1301.6 1Ring e-like14.3247.168.4203.7 e/ o separation3.523.021.9152.2 0.4GeV<E<1.2GeV1.89.311.1123.2 1. Forward cut 2. high inv.mass cut 3. 1-2 rings likelihood cut 4. Ring balance cut e/ o separation m 2 =3. 10 -3 sin 2 13 =0.1
22
22 13 sensitivity
23
23 m 23, 23 ( disappearance) Fit with: P( ) = 1 - sin 2 2 23 cos 4 13 sin 2 23 Measured spectrum in Super-K: Muon-like FC events in SK Neutrino energy reconstruction Subtraction of non-QE backg. Non-oscillated spectrum: Muon-like events in Near Detec. Neutrino energy reconstruction Subtraction of non-QE backg. Near-Far extrapolation Survival probability Measured/Non-Oscillated 22.5kt x 5 year Oscillation pattern clearly visible High precision determination: sin 2 2 23 = 0.01 m 2 23 = 4. 10 -5 eV 2 m 2 sin 2 2
24
24 Search for sterile neutrinos NC interactions sensitive to all active neutrinos. Together with and e, NC provide a measurement of and s. NC selection of single o, lepton-less events: N N o 90%CL bands Expected single o events 22.5kt x 5 year o production cross-section accurately measured (better than 5%) in the near detectors. No way to reconstruct the neutrino energy. Narrow Band neutrino beam essential.
25
25 JHF-II (>2012) 0.75 4MW beam power 50 kt 1 Mt water Cherenkov (Hyper-Kamiokande) 3x10 5 events/year Leptonic CPV
26
26 CPV Sensitivity of JHF-II 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 Stat+BG 10%syst Stat+BG 5%syst Stat+BG 2%syst Stat+BG no syst Stat. Only. No BG 13 excluded by CHOOZ 13 not reachable by JHF-I sin Sin 2 2 13 If JHF-I discovers non-zero 13, than JHF-II will be sensitive to LCPV down to =10-20 degrees. P( e ) - P( e ) P( e ) + P( e ) CP A e = = m 2 12 L 4 E sin 2 2 12 sin 13 sin.. (without matter effects)
27
27 Status of JHF La costruzione di JHF è iniziata nel 2001 e il primo fascio è atteso nel 2007. La fase-I (0.75MW) è approvata e finanziata (oltre 1M). Il programma di neutrini è una delle principali motivazioni per la costruzione della facility. Lapprovazione e il finanziamento della neutrino beam-line è atteso per questa estate in Giappone (MEXT). Una prima LoI è apparsa nel 2001. Nel 2002 si sono tenuti due workshop internazionali, con partecipanti da Giappone, Canada, Francia, Italia, Corea, Russia, Spagna, UK e USA. Sono stati formati dei working groups internazionali. Una LoI aggiornata è stata inviata nel gennaio 2003, firmata da istituti in Giappone, Canada, Francia, Italia (Bari,Napoli,Padova,Roma I), Corea, Polonia, Russia, Spagna, Svizzera, UK and USA. JHFn è il progetto più interessante per scala dei tempi, strategia sperimentale, flessibilità e ricchezza del programma scientifico. La partecipazione italiana deve rafforzarsi per contribuire in modo rilevante e visibile.
28
28 Conclusioni La fisica delle oscillazioni di neutrini vive anni di importanti risultati. I neutrini solari oscillano. Evidenza di neutrini attivi non- e dal sole. Conferma da una sorgente artificiale. Forte indicazione di sparizione dei atmosferici. Conferma (non conclusiva) da una sorgente artificiale. K2K-II: Conferma sparizione. Pattern di oscillazione. NuMi: NC/CC, sterili/tau CNGS: apparizione diretta di tau MiniBooNE:LSND? Ricerca di 13. Segno di m 2 23 (gerarchia) ?. Misura di precisione dei parametri (GUT test, mass models,...) Finora Next (qualche anno) Next 2 (entro il decennio) Leptonic CP violation. Test del triangolo di unitarietà Next 3 (....)
29
29 Roadmap NOW 2020 2010 2005 2015 K2K-II JHF ? Off-Axis HARP MICE ? Factory ? JHF-HK CNGS NuMI disappearance down to 1 o appearance NC/CC LCP violation down to 0.1 o LCP violation F R&D MiniBooNE LSND? KamLand m 2 12, 12 at 2%
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.