Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
1
DIDATTICA DELLA MATEMATICA TFA A048-A049-Matematica
Rosetta Zan Dipartimento di Matematica, Università di Pisa DIDATTICA DELLA MATEMATICA TFA A048-A049-Matematica Incontro 5 aprile 2013
2
L’apprendimento come attività costruttiva
Misconcetti e modelli primitivi Linguaggio matematico e linguaggio quotidiano Razionalità matematica e altre forme di razionalità Convinzioni, atteggiamenti, emozioni importanza per l’insegnante di avere un repertorio di interpretazioni possibili
3
L’apprendimento come attività costruttiva
Misconcetti e modelli primitivi importanza per l’insegnante di avere un repertorio di interpretazioni possibili
4
In contesto scolastico
ALLIEVO INSEGNANTE MATEMATICA L’allievo: interpreta i messaggi dell’insegnante alla luce delle proprie conoscenze, convinzioni, esperienze… interpretazione ‘distorta’ MISCONCETTI
5
L’allievo interpreta... dà loro un ‘senso’ misconcetti procedure
termini simboli proprietà concetti dà loro un ‘senso’ misconcetti
6
L’allievo interpreta…procedure
Errori sistematici. Molti allievi sbagliano… ...non perché applicano in modo scorretto procedure corrette Ma perché applicano (in modo corretto) procedure scorrette!
7
Scena 1: Johnnie 437 – 284 = 437- 284= 253 L’insegnante: “Hai dimenticato di sottrarre 1 da 4 nella colonna delle centinaia!”
8
L’allievo interpreta… termini / simboli
spigolo – rombo - altezza... ipotesi / tesi le parentesi segno di uguale …
9
Le altezze di un triangolo
MODELLO PRIMITIVO B C A B INFLUENZA DEL LINGUAGGIO l’altezza di una persona …di una casa …di un ponte C
10
L’allievo interpreta… termini / simboli
spigolo – rombo - altezza... ipotesi / tesi le parentesi segno di uguale …
11
Scena 7: Alice Deve riconoscere in alcuni enunciati l’ipotesi e la tesi. Sistematicamente, riconosce come ipotesi quella che invece è la tesi.
12
L’allievo interpreta… termini / simboli
spigolo – rombo - altezza... ipotesi / tesi le parentesi segno di uguale …
13
L’allievo interpreta… termini / simboli
spigolo – rombo - altezza... ipotesi / tesi le parentesi segno di uguale …
14
Scena 6: Marco Deve moltiplicare x + 1 per x +2: x + 1 (x+2) =
= x2 + 2x + x + 2 = x2 + 3x + 2
15
L’allievo interpreta… termini / simboli
spigolo – rombo - altezza... ipotesi / tesi le parentesi segno di uguale …
16
L’allievo interpreta… termini / simboli
spigolo – rombo - altezza... ipotesi / tesi le parentesi segno di uguale …
17
Il segno di uguale “In un bosco vengono piantati 425 alberi nuovi. Qualche anno dopo, vengono abbattuti i 217 alberi più vecchi. Nel bosco ci sono quindi 1063 alberi. Quanti alberi c’erano prima che venissero piantati quelli nuovi?” = 1280 – 425 = 855 “4 + 5 = 3 + 6” ‘dopo il segno “=” ci dev’essere la risposta, e non un altro problema!’ “4 + 5 = 9” e “3 + 6 = 9”.
18
Il segno di uguale 30-10 = 20+31 = 51+31 = 82+15 = 97
Problema: Quanti giorni di vacanza abbiamo avuto quest’estate? 30-10 = = = = 97 giugno luglio agosto settembre "Secondo te questo calcolo fatto da due bambini di terza è giusto?"
19
Una discussione in classe
CHE COSA SIGNIFICA IL SEGNO "=" IN MATEMATICA? INS: Cosa vuol dire "essere uguale a" , quel segno lì in matematica che significa? ILA: Vuol dire che viene il risultato.
20
LUI: Tu per fare l'uguale devi fare prima l'operazione e poi devi fare l'uguale, così ti viene fuori il risultato. GIO: Uguale significa avere un risultato in un'operazione, in una moltiplicazione e così INS: E se io scrivo 8=8 va bene? GIO: No, devi anche metterci +0 perché se no non si capisce… …devi metterci anche qualcosa.
21
Scena 9: Irene x2 = 3x - 2 x2 + 3x + 2 = 0
Irene, prima liceo classico: x2 = 3x - 2 x2 + 3x + 2 = 0 … e trova quindi le due soluzioni.
22
Irene “Non sarò certo io a contestare una regola che tutti accettano!
Mi adeguo senz’altro. Ma nessuno mi potrà mai convincere che se aggiungo la stessa quantità ai due membri di un’equazione, non cambia niente!”
23
L’uso delle lettere Scrivi un’equazione usando le variabili S e P per rappresentare il seguente enunciato: ‘In questa università gli studenti sono 6 volte i professori’. Usa S per il numero degli studenti, e P per il numero dei professori. In un gruppo di 150 matricole di Ingegneria il 37% non scrive l’equazione corretta S=6P. L’errore più comune è: 6S=P. La percentuale di errore cresce al 73% in una versione del problema in cui il rapporto professori / studenti è 4:5 invece che 1:6.
24
In uno studio successivo viene utilizzata una versione modificata del test originario (Rosnick, 1981). Tale versione viene data ad un gruppo di 33 studenti che seguono un corso di statistica e a 119 studenti di scienze sociali in un corso di calcolo al secondo semestre: In questa università gli studenti sono 6 volte i professori. Questo fatto è rappresentato dall’equazione: S=6P. a) In questa equazione, cosa sta ad indicare la lettera P? i) Professori ii) Professore iii) Numero dei professori iv) Nessuna delle risposte precedenti v) Più di una fra le risposte precedenti (se sì, indica quali) vi) Non so b) Cosa sta ad indicare la lettera S? i) Professore ii) Studente iii) Studenti iv) Numero degli studenti v) Nessuna delle risposte precedenti vi) Più di una fra le risposte precedenti (se sì, indica quali) vii) Non so 22 %
25
L’allievo interpreta…concetti
misconcetti la moltiplicazione fa “ingrandire” un numero è negativo nella sua rappresentazione compare esplicitamente il segno “-” insieme
26
Modelli primitivi (E. Fischbein)
Modello: moltiplicazione come addizione ripetuta Operando: può essere un numero positivo qualsiasi, Operatore: deve invece essere un numero intero si può dire 3 volte 0,65: 0,65 + 0,65 + 0,65 …ma 0,65 volte 3 ??? la moltiplicazione “fa ingrandire”
27
PROBLEMA 1 Da un quintale di grano si ottengono 0,75 quintali di farina. Quanta farina si ricava da 15 quintali di grano? PROBLEMA 2 Un chilo di detergente viene usato per produrre 15 chili di sapone. Quanto sapone può essere fatto con 0,75 chili di detergente? 76% 35%
28
TANGENTE AL GRAFICO DI UNA FUNZIONE
Dare una definizione di tangente al grafico di una funzione.
29
Modello primitivo di tangente
Il disegno può portare a costruire un’immagine per il concetto di tangente in altri casi quali: A P concept image concept definition
30
Quando gli studenti seguono un corso di analisi ricevono in genere una definizione formale di tangente in un punto al grafico di una funzione derivabile come retta passante per quel punto con pendenza uguale alla derivata della funzione nel punto. Nonostante questo, il loro modello di tangente, costruito attraverso esperienze che hanno coinvolto figure come le precedenti, può contenere elementi ‘parassiti’: ad esempio il vincolo che una tangente può incontrare una curva in un punto solo e non può attraversare la curva in quel punto. Questo modello (o per usare le parole di Vinner: concept image) è confermato dalle risposte date alle seguenti domande da 278 studenti che seguivano un corso di analisi al primo anno di università:
31
Di seguito sono disegnate tre curve.
Su ognuna di esse è scelto un punto P. Per ognuno dei tre casi scegli l'affermazione che ti sembra corretta fra le tre elencate sotto, e segui le istruzioni fra parentesi. Per P è possibile condurre esattamente una tangente alla curva (disegnala). Per P è possibile condurre più di una tangente (specifica quante: due, tre, infinite. Disegnale tutte se sono in numero finito, ed alcune se sono infinite). Per P è impossibile condurre tangenti alla curva.
35
In contesto scolastico
ALLIEVO ITALIANO MATEMATICA Verbi riflessivi: Sono quelli che descrivono azioni che si fanno allo specchio. Pettinarsi, lavarsi, truccarsi… INSEGNANTE L’allievo: interpreta i messaggi dell’insegnante alla luce delle proprie conoscenze, convinzioni, esperienze… interpretazione ‘distorta’ MISCONCETTI
36
Decisioni dell’insegnante
Portare alla luce i misconcetti Cercare di scardinarli Come?
37
Decisioni dell’insegnante
Portare alla luce i misconcetti 1. Indicatori: Errori sistematici Strategia: chiedere la collaborazione dell’allievo nel descrivere i propri processi di pensiero 2. Proporre situazioni non standard in cui gli schemi degli allievi non funzionano 3. Questionari
38
Il giardino di Torquato?
2. Proporre situazioni non standard in cui gli schemi degli allievi non funzionano
39
Dalle prove PISA. ‘Andatura’
La figura mostra le orme di un uomo che cammina. La lunghezza P del passo è la distanza fra la parte posteriore di due orme consecutive. Per gli uomini, la formula fornisce una relazione approssimativa fra n e P, dove: n = numero di passi al minuto, e P = lunghezza del passo in metri
40
- Domanda 1: Se la formula si applica all’andatura di Enrico ed Enrico fa 70 passi al minuto, qual è la lunghezza del passo di Enrico? Scrivi qui sotto i passaggi che fai per arrivare alla risposta. n = numero di passi al minuto P = lunghezza del passo in metri Risultati (Italia): 23% risposte corrette 35% omissioni
41
- Domanda 1: Se la formula si applica all’andatura di Enrico ed Enrico fa 70 passi al minuto, qual è la lunghezza del passo di Enrico? Scrivi qui sotto i passaggi che fai per arrivare alla risposta. n = numero di passi al minuto P = lunghezza del passo in metri 70 / P = 140 Errore più frequente: 140 / 70
42
Negli esempi che seguono a è un numero diverso da zero. Allora:
positivo negativo dipende a2 + 1 è un numero a2 - 5 aaa + 3 a 3000+ a - 5 a2 - a 3. Questionari
43
Decisioni dell’insegnante
Portare alla luce i misconcetti Cercare di scardinarli Rendere gli allievi consapevoli Costruire situazioni di ‘conflitto cognitivo’ Discussione collettiva
45
Alcune implicazioni generali
COMPITO PER CASA Riflettere: sulla distinzione fra errore e fallimento sulle implicazioni di tale distinzione 1. Il ruolo del contesto 2. Il ruolo dell’errore: 2.1 L’epistemologia e la pedagogia dell’errore 2.2 L’interpretazione dell’errore 2.2.1 Distinzione errore / fallimento 2.2.2 Un repertorio di interpretazioni
46
errore / fallimento
47
In contesto scolastico:
Un soggetto: l’insegnante riconosce il fallimento… ed individua i comportamenti fallimentari di un altro soggetto: l’allievo
48
L’insegnante… Vuole che l’allievo modifichi i suoi comportamenti fallimentari Cioè i comportamenti che secondo l’insegnante lo hanno portato… …al fallimento riconosciuto dall’insegnante stesso
49
ma è l’allievo che deve modificarli
INSEGNANTE ALLIEVO l’insegnante vuole che l’allievo modifichi i propri comportamenti ma è l’allievo che deve modificarli
50
!
51
implicazioni didattiche
52
OSSERVAZIONE 1 Se l'allievo si è posto un obiettivo diverso, o non si è posto alcun obiettivo, non necessariamente condivide il fallimento osservato dall'insegnante. E se d’altra parte non riconosce un fallimento, per quali motivi dovrebbe cambiare i propri comportamenti?
53
l’insegnante ha in mente un obiettivo interno alla matematica
ALLIEVO l’insegnante ha in mente un obiettivo interno alla matematica (trovare l’ipotenusa, le soluzioni di un’equazione, …) l’allievo si pone un obiettivo esterno alla matematica (dare la risposta giusta, prendere un buon voto, …)
54
Spesso… L’allievo non riconosce il fallimento individuato dall’insegnante perché si è posto un obiettivo diverso OBIETTIVO: dare la risposta corretta
55
Esempio: Marco per l’insegnante… ci sono 2 errori! …per Marco
Deve moltiplicare x per x +2: x + 1 (x+2) = x2 + 2x + x + 2 = x2 + 3x + 2 per l’insegnante… ci sono 2 errori! …per Marco l’obiettivo è stato raggiunto
56
FALLIMENTO ERRORE
57
ALLIEVO INSEGNANTE ERRORE FALLIMENTO FALLIMENTO
58
OSSERVAZIONE 2 Inoltre non è detto che l’allievo condivida l'individuazione dei comportamenti fallimentari. E d’altra parte lui vorrà cambiare i comportamenti che lui stesso (e non l’insegnante) riconosce come fallimentari…
59
…e non ha risolto correttamente gli esercizi
Esempio 1: Se l’allievo ha copiato male il compito da un compagno bravo… …e non ha risolto correttamente gli esercizi Comportamenti fallimentari: Non aver studiato Aver copiato male Deve studiare / esercitarsi di più, meglio… Devo copiare meglio…
60
Esempio 2: Risposte a caso…
Per l’allievo il comportamento fallimentare è: Aver dato quella particolare risposta Per l’insegnante. Aver risposto a caso …cambia la risposta!
62
APPROFONDIMENTO: Le ricerche sui processi decisionali
63
Luigi ha 34 anni. E’ intelligente, ma ha poca fantasia, è abitudinario, metodico e non molto attivo. A scuola era bravo in matematica, ma debole nelle materie umanistiche. a) Luigi fa il medico e gioca a poker per hobby b) Luigi fa l’architetto c) Luigi fa il contabile d) Luigi suona per hobby musica jazz e) Luigi ha l’hobby del surf f) Luigi fa il giornalista g) Luigi fa il contabile, e suona per hobby musica jazz h) Luigi ha l’hobby dell’alpinismo
64
Linda ha 31 anni. E’ nubile, schietta e molto brillante
Linda ha 31 anni. E’ nubile, schietta e molto brillante. Ha una laurea in filosofia. Da studentessa si interessava molto ai problemi di discriminazione razziale e di ingiustizia sociale, e prendeva parte attiva alle dimostrazioni anti-nucleari. a) Linda insegna in una scuola elementare b) Linda lavora in una libreria e prende lezioni di yoga c) Linda è attiva nel movimento femminista d) Linda è un’assistente sociale e) Linda è membro della Organizzazione Elettorale Femminile f) Linda lavora in una banca g) Linda è un agente assicurativo h) Linda lavora in una banca ed è attiva nel movimento femminista
65
La roulette russa Sei persone si sfidano alla roulette russa usando una pistola con un tamburo a 6 colpi. La pistola ha un solo proiettile: ciascuno a turno preme il grilletto e, se è fortunato, passa la pistola al compagno accanto. (1) Secondo te qual è la posizione più sicura? 50%: la prima 23%: sono tutte equivalenti (2) In quale posizione preferiresti trovarti? 40%: la prima 40%: l’ultima
66
Tversky e Shafir, 1992 1) Hai appena consegnato gli scritti di un difficile esame universitario. Saprai dopodomani se sei stato promosso o se sei stato bocciato. Ti viene proposta un’offerta particolarmente vantaggiosa per una vacanza alle isole Hawaii (un ‘pacchetto’ tutto-compreso per sette giorni a sole lire). Devi, però, decidere entro domani, dando un anticipo di lire non rimborsabili. Puoi differire la decisione di un giorno (quindi, nel frattempo saprai con certezza se sei stato promosso o se sei stato bocciato), pagando un extra di non rimborsabili, e non scalabili dal prezzo del pacchetto. Che decideresti di fare? Allo studente viene poi chiesto cosa deciderebbe se sapesse: 2) di essere stato promosso 3) di essere stato bocciato
67
1) Situazione di incertezza 2) Sa di essere stato promosso
Le terne possibili: C = compra N = non compra incerto promosso bocciato C C C C C N C N C C N N N C C N C N N N C N N N 1) Situazione di incertezza 2) Sa di essere stato promosso 3) Sa di essere stato bocciato
68
Secondo te in italiano ci sono più parole di sette lettere che finiscono in –ndo.
oppure più parole che hanno una n in terza posizione: - - n ?
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.