Scaricare la presentazione
La presentazione è in caricamento. Aspetta per favore
PubblicatoCalogera Parente Modificato 11 anni fa
1
Equazioni non lineari Data una funzione consideriamo il problema di determinare i valori x tali che Tali valori sono solitamente chiamati zeri o radici della funzione f. Esempi: Equazioni algebriche: In generale non sono disponibili formule esplicite per la determinazione delle radici di una funzione (per esempio equazioni algebriche) metodi iterativi Tecniche che consentono di approssimare le soluzioni con un prestabilito grado di precisione A partire da una approssimazione iniziale si costruisce una successione tale che, sotto opportune ipotesi, risulta convergere alla radice cercata.
2
Procedimenti iterativi
Sia P un problema ed α una soluzione del problema P. Supponiamo di utilizzare un procedimento iterativo per la determinazione di α che genera una successione convergente ad α . E’ importante tener presente tre questioni fondamentali Velocità di convergenza Definizione: data una successione convergente ad un limite α, si ponga se esistono due numeri reali tali che sia si dice che la successione ha ordine di convergenza p e fattore di convergenza C. Per p=1 e p=2 la convergenza si dice anche lineare e quadratica. Nel caso p=1 si ha necessariamente C<1. Un metodo iterativo è convergente di ordine p se tale è la successione da esso generata.
3
Scelta del valore di innesco
Scelta del valore di innesco. Supponiamo di considerare procedimenti iterativi ricorrenti ad un passo è necessario, per poter innescare il procedimento, un punto di innesco Un metodo converge localmente ad α se la convergenza della successione dipende in modo critico dalla vicinanza di ad α Il procedimento è globalmente convergente quando la convergenza non dipende da quanto è vicino ad α. Per i metodi a convergenza locale la scelta del punto di innesco è cruciale. Criteri di arresto. Chiaramente non è possibile generare infinite iterate della successione. Il procedimento dovrebbe arrestarsi quando Non disponendo della soluzione è necessario procurarsi una stima di Una possibile strategia è quella di approssimare con Si ottiene il criterio relativo Quando è molto piccolo tale criterio risulta troppo stringente ed è più opportuno usare un criterio di arresto assoluto dato da
4
Fondendo i due criteri si ottiene il seguente Criterio di arresto misto
Dove sono rispettivamente la tolleranza relativa ed assoluta. Automaticamente il criterio sarà di tipo assoluto quando è molto piccolo e di tipo relativo nei restanti casi. Si può vedere che è asintoticamente una buona stima di nel caso di converganza quadratica o superlineare, mentre nel caso di convergenza lineare l’approssimazione sarà tanto milgiore quanto la costante C è vicina a zero.
5
Metodo di bisezione Il metodo di bisezione è il metodo iterativo più semplice per approssimare gli zeri reali di una funzione. Ipotesi: 1) f(x) continua nell’intervallo [a,b] 2) f(a) f(b)<0 per il teorema degli zeri ammette almeno una soluzione α di f(x)=0, in (a,b). Si procede suddividendo ad ogni passo l’intervallo [a,b] a metà e determinando in quale dei due sottointervalli si trova la soluzione, dimezzando cosi’ l’ampiezza dell’intervallo che contiene α. Si pone Per i=1,2,….,nmax si calcolano Se Altrimenti se altrimenti Il procedimento viene arrestato se per un indice i risulta
6
Ampiezza dell’intervallo ed errore
Per costruzione ad ogni passo l’ampiezza dell’intervallo e’ dimezzata, dopo n passi arriviamo all’intervallo di ampiezza Se come stima di α prendiamo abbiamo Se poniamo otteniamo n da I metodo di bisezione converge sempre alla soluzione con la sola ipotesi che f sia continua nell’intervallo [a,b] La convergenza e’ pero’ lenta e questo costituisce il limite del metodo. Una spiegazione puo’ essere ricercata nel fatto che non si tiene conto dei valori della funzione ma soltanto dei segni. Geometricamente il metodo costruisce ad ogni passo l’approssimazione della radice calcolando l’intersezione con le ascisse della retta passante per i punti
7
Metodo della regula falsi
Un modo naturale per migliorare il metodo di bisezione è quello di considerare anche i valori che la funzione assume negli estremi dell’intervallo e prendere come nuova approssimazione della soluzione l’intersezione delle ascisse con la retta passante per Il metodo metodo risultante è noto come metodo regula falsi o della falsa posizione Dato Finchè non sia verificato un criterio di arresto, poni Se Altrimenti k=k+1 Il metodo genera una successione di intervalli decrescenti in cui è contenuta la radice è più veloce rispetto al metodi di bisezione, anche se in generale pertanto il criterio di arresto basato sull’ampiezza dell’intervallo non è applicabile. La scelrta dell’intervallo comporta una convergenza globale Si può dimostrare che la velocità di convergenza è lineare:
8
Metodo delle secanti Una variante della regula falsi è il metodo delle secanti in cui sono richieste due approssimazioni iniziali senza alcun’ altra condizione e senza la necessità di controllare il segno di f(x) Assegnati due valori iniziali si costruisce la successione La convergenza del metodo è garantita se le approssimazioni iniziali sono abbastanza vicine alla radice α: convergenza locale. Vale il seguente risultato: Teorema: Sia , essendo I un intorno opportuno della radice, e si assuma Allora se i dati iniziali sono scelti in I sufficientemente vicini ad α, la successione converge ad α in modo superlineare, con ordine
9
Metodo di Newton Se si vuole migliorare ancora di più la velocità di convergenza è necessario utilizzare più informazioni della funzione. Nel caso in cui essa sia derivabile si può considerare anche la sua derivata f’(x). Sviluppando f in serie di Taylor in un intorno di α ed arrestando lo sviluppo al prim’ordine si ottiene una versione linearizzata del problema f(x)=0. Assumendo quindi f’(α)≠0 (radice semplice) ed assegnato un valore iniziale si ottiene il metodo di Newton Geometicamente si prende come nuova approssimazione l’intersezione delle ascisse con la retta tangente in Alla k-esima iterazione questo metodo richiede due valutazioni funzionali L’aumento del costo computazionale è compensato dal fatto che la convergenza (locale) è di ordine superiore al primo. In generale è quadratica
10
Metodi di iterazione funzionale
La ricerca degli zeri di una funzione f è ricondotta allo studio dei punti fissi di un’opportuna funzione g La successione delle approssimazioni sarà definita come La funzione di iterazione g non è unica e può essere costruita nei modi più diversi, ma non tutti daranno luogo a strumenti efficienti. Bisogna studiare sotto quali condizioni la successione delle iterate appartenga sempre al dominio di f e sia convergente ad α. Teorema: Data la successione Supponiamo che la funzione g soddisfi le seguenti condizioni (i) g: [a,b] →[a,b] (ii) (iii) Allora g ha un unico punto fisso α in [a,b] e la successione delle iterate da essa generate converge ad α, per ogni scelta del punto iniziale in [a,b]. Inoltre dim. L’ipotesi (i) e la continuità di g (implicita in (ii)) garantiscono che g abbia almeno un punto fisso in [a,b]. L’hp (iii) assicura che g è una contrazione per cui il punto fisso è unico (si dimostra per assurdo).
11
Per dimostrare che la successione converge si considera
applicando il teorema della media Inoltre dalla continuità di g’ si ha
12
Convergenza la successione delle iterate generata da g è tale che (a)
Risultato importante teoricamente, ma nella pratica è difficile stabilire a priori l’intervallo [a,b] in cui sono soddisfatte le ipotesi. Teorema (Otrowski): Sia α un punto fisso di Se allora la successione delle iterate generata da g è tale che (a) (b) La convergenza può esserci in insiemi molto più grandi di quelli in cui (condizione sufficiente, convergenza locale)
13
Ordine di convergenza Per i metodi di iterazione funzionale è possibile anche dare una relazione tra ordine del metodo e molteplicità di α rispetto a g’ Teorema: Sia (opportuno intervallo) punto fisso di Se per un punto la successione è convergente e se per i=1,....p-1 e allora il metodo ha ordine di convergenza p e risulta Dim. Dallo sviluppo di Taylor si ha in generale (tenuto conto che ) dove Quindi se valgono le hp del teorema si ha la tesi. A parità di ordine di convergenza p, quanto più piccola risulterà la quantità tanto più veloce sarà la convergenza delle iterate ad α
14
Convergenza metodo di Newton
Il metodo di Newton può essere visto come un metodo di iterazione funzionale con la funzione g data da Osservando che se il metodo è localmente sempre convergente La convergenza è quadratica per radici semplici e si riduce a lineare per radici multiple. Risultati di convergenza globale Teorema: Sia (i) (ii) la successione originata dal metodo di Newton DECRESCE monotonicamente ad α. Per gli intorni sinistri [α+ρ, α) si ottiene una successione che converge in modo monotono CRESCENTE ad α.
15
Sistemi non lineari Problema: data
La maggior parte dei metodi considerati per il caso monodimensionale possono venire generalizzati con successo al caso di sistemi. Tra essi non ci possono essere quei metodi che considerano, ad ogni iterazione, una scelta opportuna di un intervallo in cui era compresa la radice (bisezione, regula falsi). Problema: data Tra i metodi il più usato è l’estensione vettoriale del metodo di Newton dove indica la matrice Jacobiana Dal punto di vista implementativo il metodo può essere riscritto considerando, ad ogni iterazione, due sottopassi Risolvere Calcolare Ad ogni passo k si deve risolvere un sistema lineare con matrice
Presentazioni simili
© 2024 SlidePlayer.it Inc.
All rights reserved.