Liceo Scientifico Enrico Fermi A.S. 2006/2007 La crittografia Alessandro Franci Tesina di Maturità Scientifica
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Titolo Testo a aa a
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Obbiettivi Cos'è la crittografia? La crittografia è la scienza che si occupa di individuare metodi o protocolli crittografici che rendano il contenuto di un messaggio o di un documento comprensibile solo a determinate persone. Chi se ne occupa? Un tempo erano solo spie e militari che si preoccupavano di tenere segreti i propri messaggi. Oggi, la rivoluzione telematica ha aperto un nuovo mercato dove la riservatezza è essenziale per i computer che immagazzinano e si scambiano una quantità sempre più elevata di dati personali.
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Obbiettivi Quando nasce? La crittografia come modifica volontaria del testo esisteva già al tempo degli egiziani nel 1900 a.C., come dimostrano prove ritrovate nella tomba del faraone Knumotete II. La parola crittografia deriva dal greco kryptòs che significa “nascosto”; un'altra parola correlata è stenografia che significa “scrittura nascosta”
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Stenografia e crittografia Stenografia: deriva da steganos (“coperto”) e graphein; nasconde la scrittura; veniva usata molto nel mondo greco e romano. Crittografia: nasconde il significato, associando ad ogni lettera un simbolo o un'altra lettera
Stenografia: la scienza dell'occultamento fisico dei messaggi, contrapposta alla crittografia, che non cela il mesaggio in se ma il suo significato
( Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Vari tipi di crittografia La crittografia si divide in due branchie. Metodo di trasposizione sostituzione mutare di posto le lettere in un testo: poche lettere: poche combinazioni molte lettere: più combinazioni codicicifre sostituzione a livello delle parole o frasi sostituzione a livello delle lettere
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Esempio di trasposizione chiave: LEONE testo in chiaro: ciao domani ti porto quel carico L E O N E c i a o d o m a n i t i p o r t o q u e l c a r i c o testo crittografato: cottlc imioco aapqa onour direi
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Cifratura di Cesare Primo esempio documentato di cifratura per sostituzione: De bello gallico di Giulio Cesare Si considera l'alfabeto e si trasla l'origine dell 'alfabeto di P posizioni. Si sostituisce ogni lettera del testo originale con la lettera corrispondente all'alfabeto cifrato. alfabeto normale: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z alfabeto cifrato: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C Testo in chiaro:CIAO Testo crittografato:FLDR
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Le chiffre indéchiffrable Nel 1535 Blaise de Vigenère scopre la cifratura polialfabetica. Non si usa più un solo alfabeto cifrante, bensì 26. Il primo passo da fare è stilare la Tavola di Vigenère.
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Tavola di Vigenère A B C D E F G H I J K L M N O P Q R S T U V W X Y Z B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C D E F G H I J K L M N O P Q R S T U V W X Y Z A B D E F G H I J K L M N O P Q R S T U V W X Y Z A B C E F G H I J K L M N O P Q R S T U V W X Y Z A B C D F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G H I J K L M N O P Q R S T U V W X Y Z A B C D E F H I J K L M N O P Q R S T U V W X Y Z A B C D E F G I J K L M N O P Q R S T U V W X Y Z A B C D E F G H J K L M N O P Q R S T U V W X Y Z A B C D E F G H I K L M N O P Q R S T U V W X Y Z A B C D E F G H I J L M N O P Q R S T U V W X Y Z A B C D E F G H I J K M N O P Q R S T U V W X Y Z A B C D E F G H I J K L N O P Q R S T U V W X Y Z A B C D E F G H I J K L M O P Q R S T U V W X Y Z A B C D E F G H I J K L M N P Q R S T U V W X Y Z A B C D E F G H I J K L M N O Q R S T U V W X Y Z A B C D E F G H I J K L M N O P R S T U V W X Y Z A B C D E F G H I J K L M N O P Q S T U V W X Y Z A B C D E F G H I J K L M N O P Q R T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U V W X Y Z A B C D E F G H I J K L M N O P Q R S T V W X Y Z A B C D E F G H I J K L M N O P Q R S T U W X Y Z A B C D E F G H I J K L M N O P Q R S T U V X Y Z A B C D E F G H I J K L M N O P Q R S T U V W Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Esempio di crittografia polialfabetica Testo chiaro: spostare truppe su cima est Parola chiave: MONTE M O N T E M O N T E M O N T E M O N T E M O N s p o s t a r e t r u p p e s u c i m a e s t ddd A B C D E F G H I J K L M N O P Q R S T U V W X Y Z B C D E F G H I J K L M N O P Q R S T U V W X Y Z A C D E F G H I J K L M N O P Q R S T U V W X Y Z A B D E F G H I J K L M N O P Q R S T U V W X Y Z A B C E F G H I J K L M N O P Q R S T U V W X Y Z A B C D F G H I J K L M N O P Q R S T U V W X Y Z A B C D E G H I J K L M N O P Q R S T U V W X Y Z A B C D E F H I J K L M N O P Q R S T U V W X Y Z A B C D E F G I J K L M N O P Q R S T U V W X Y Z A B C D E F G H J K L M N O P Q R S T U V W X Y Z A B C D E F G H I K L M N O P Q R S T U V W X Y Z A B C D E F G H I J L M N O P Q R S T U V W X Y Z A B C D E F G H I J K M N O P Q R S T U V W X Y Z A B C D E F G H I J K L N O P Q R S T U V W X Y Z A B C D E F G H I J K L M O P Q R S T U V W X Y Z A B C D E F G H I J K L M N P Q R S T U V W X Y Z A B C D E F G H I J K L M N O Q R S T U V W X Y Z A B C D E F G H I J K L M N O P R S T U V W X Y Z A B C D E F G H I J K L M N O P Q S T U V W X Y Z A B C D E F G H I J K L M N O P Q R T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U V W X Y Z A B C D E F G H I J K L M N O P Q R S T V W X Y Z A B C D E F G H I J K L M N O P Q R S T U W X Y Z A B C D E F G H I J K L M N O P Q R S T U V X Y Z A B C D E F G H I J K L M N O P Q R S T U V W Y Z A B C D E F G H I J K L M N O P Q R S T U V W X Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Esempio di crittografia polialfabetica chiave: MONTE testo in chiaro: s p o s t a r e t r u p p e s u c i m a e s t testo cifrato: E D B L X M F R M V G D C X W G Q V F E Q G G
Cercare che possibilità ci sono per la cifratura cesare e quali per la cifratura polialfabetica
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Enigma 1918: Arthur Scherbius e Richard Ritter fondano in Germania la Scherbius & Ritter. Scherbius, che lavorava nell'area sviluppo, voleva rimpiazzare la vecchia crittografia su carta con qualcosa di automatizzato. Nacque così
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Enigma: modalità di funzionamento L'operatore posiziona i tre rotori secondo il codice del giorno. Preme un tasto e un impulso elettrico, passando attraverso l'unità scambiatrice e circuiti non fissi, va ad illuminare il LED della lettera cifrata.
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Enigma: il progetto
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Enigma: la tecnica Ogni tasto premuto, il terzo rotore gira di un ventiseiesimo di giro; completato un giro interno, gira il secondo gira di un ventiseiesimo. Quando il secondo completa un giro, il primo gira di un ventiseiesimo.
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Enigma: i circuiti elettrici
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Enigma: pannello a prese multiple Fu inserito un pannello a prese multiple fra la tastiera e i rotori: con degli spinotti si scambiavano due lettere (possibilità di scambiare solo 6 coppie di lettere, le altre 14 rimanevano fisse)
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Enigma: le probabilità Ad ogni tasto premuto cambia l'alfabeto cifrante: abbiamo 26x26x26=17576 alfabeti cifranti. Con il pannello a prese multiple i possibili abbinamenti sono di 12 (6x2) lettere su 26, ovvero possibilità. Considerando gli alfabeti cifranti e il pannello a prese multiple: 17576x =circa 10 milioni di milardi di possibilità.
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Enigma: la decifrazione Per decifrare il destinatario doveva possedere un'altra macchina enigma e un cifrario con l'assetto (la lettera iniziale) dei rotori da utilizzare giorno per giorno. Attraverso un riflessore, il segnale elettrico fa la strada inversa e premuta una lettera del testo cifrato, da come risultato la lettera in chiaro.
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Enigma e l'esercito tedesco Dal 1926 enigma fu assunta dall'esercito nazista. Da allora gli alleati non riuscirono più a decifrare alcun messaggio tedesco.
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Enigma e gli alleati Fu creato a Bletchley Park un'organizzazione di decifrazione: venivano reclutati non più solo linguisti, ma ora anche molti matematici. Più passava il tempo, più persone venivano ingaggiate.
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Enigma e la battaglia di Inghilterra Nella Battaglia d'Inghilterra, i crittonalisti furono spesso in grado di comunicare alla difesa aerea il luogo e il momento delle imminenti incursioni tedesche. Inoltre, essi fornivano senza interruzione dati sullo stato della Luftwaffe, sul numero di velivoli persi e il ritmo con cui erano sostituiiti. I dati erano inviati al quartier generale dello MI6, che li trasmetteva al ministero della Guerra, al ministero dell'Aereonautica e all'Amiragliato, dove veniva presi i provvedimenti più opportuni.
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica La crittografia nel XX secolo Problema più grande nel XX secolo: distribuzione delle chiavi Una banca vuole criptare le telefonate verso i suoi clienti per paura di intercettazioni. Come gli invia la chiave? Telefono: potrebbe essere intercettata Corriere: poco affidabile Brevi manu: grande spreco di tempo
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Nascita delle chiavi asimmetriche 1975: Whitfield Diffie scopre le chiavi asimmetriche SVOLTA EPOCALE Finora sono state usate solo chiavi simmetriche: stessa chiave per cifrare e per decifrare
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Le chiavi asimmetriche Ora invece chiave per cifrare ≠ chiave per decifrare Puoi cifrare, ma non decifrare (anche quello che hai appena cifrato): per farlo devi avere la chiave privata
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Risolto il problema della distribuzione delle chiavi La chiave per cifrare sarà pubblica (sorta di elenco telefonico) La chiave per decifrare sarà privata e nascosta con cura Grande idea, ma in che modo? Diffie ha lanciato l'idea, ora bisogna trovare una funzione matematica che la soddisfi
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica RSA 1977: tre studiosi matematici Adleman, Rivest e Shamir trovarono una funzione matematica e nacque la cifratura RSA, usata ancora oggi
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica RSA: il metodo ● 1. Si scelgono a caso due numeri primi p e q abbastanza grandi da garantire una buona sicurezza ● 2. Si calcola il loro prodotto n = pq ● 3. Si sceglie un numero e più piccolo coprimo con (p-1)(q-1) ● 4. Si calcola un numero d tale che e * d = 1 (mod(p-1)(q-1)) ● La chiave pubblica sarà (n,e), la chiave privata sarà (n,d)
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica RSA: esempio Generazione delle chiavi: 1. p = 61, q = 53, (p-1)(q-1) = n = p * q = 61 * 53 = e = 17 < n coprimo per d = 2753 infatti e * d = * 17 = = 1 (mod(p-1)(q- 1)) = 1 (mod 3120) poichè 46801/3120=15 con resto 1 la chiave pubblica sarà (3233,17) la chiave privata (3233,2753)
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica RSA: esempio Cifratura e decifratura: Prendiamo in considerazione il messaggio m = 123 e cifriamolo per ottenere il messaggio cifrato c. c = m^e (mod n) = 123^17 (mod 3233) = 855 E ora decifriamo c = 855 per ottenere m: qui useremo 2753, componente essenziale della chiave privata. m = d^c (mod n) = 855 ^ 2753 (mod 3233) = 123
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica RSA: cracking Per ottenere la chiave privata, dobbiamo essere a conoscenza di p e q. Dato n, l'unico modo per trovare i due fattori primi p e q è quello della scomposizione in fattori primi di n, che è un procedimento computazionalmente impegnativo.
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica RSA: l'inviolabilità Prendiamo p e q come numeri di ordine di grandezza di 10^65, ovvero n = 10^130: se nel 1995 cento milioni di personal computer avessere lanciato un assalto coordinato, sarebbero bastati 15 secondi per trovare p e q. Per le operazioni bancarie si usa n=10^308. Lo sforzo nel 1995 di cento milioni di computer avrebbe impiegato più di mille anni. Aumentando l'ordine di grandezza di n, la cifratura RSA può essere considerata inviolabile.
Alessandro Franci Liceo Scientifico Enrico Fermi, A.S. 2006/2007 La crittografia Tesina di Maturità Scientifica Bibliografia Testi Simon Singh, Codici & segreti, BUR Saggi Bruce Schneier, Niels Ferguson, Crittografia pratica, APOGEO Siti internet