Chimica Fisica II Scienza dei Materiali NMR 2^ Parte

Slides:



Advertisements
Presentazioni simili
Principi fisici della RM
Advertisements

Nuclear Magnetic Resonance
SPETTROSCOPIA COERENTE.
SPETTROSCOPIA DI RISONANZA MAGNETICA
Immagini di Risonanza Magnetica
1 Grandezze scalari e vettoriali Grandezze scalari: sono completamente definite da un numero esempi: massa, lunghezza, tempo. Grandezze vettoriali: sono.
VETTORI: DEFINIZIONI Se ad una grandezza fisica G si associa una direzione ed un verso si parla di vettori: ✔ Le grandezze fisiche possono essere di due.
Slides Assunzione dei vari stati della materia Quali sono i fattori fisici e chimici che determinano l’assunzione da parte di una sostanza.
Chi era James Joule James Joule fu un fisico britannico che si interessò al calore, al lavoro e all’energia. Joule dimostrò in un congresso irlandese che.
Si ricavano informazioni dallo studio delle proprietà magnetiche dei nuclei.
Fln apr 151 Corso di Fisica per CTF AA 2014/15 Oscillazioni.
LAVOISIER Conservazione della massa nelle reazioni chimiche PROUST (proporzioni definite) Un determinato composto contiene gli elementi in rapporti di.
UNIVERSITA’ DEGLI STUDI DI NAPOLI FACOLTA’ DI FARMACIA Corso di Laurea in Controllo di qualità Corso di Metodi spettroscopici per l’analisi organica Prof.
Le equazioni di Maxwell Le equazioni di Maxwell … costituiscono uno dei momenti più alti della fisica classica Le quattro equazioni di Maxwell dimostrano.
Energia. Cos’è l’energia L’energia è una proprietà che associamo agli oggetti o sistemi che fa sì che in un sistema si possano produrre dei cambiamenti:
INDICE IL LAVORO; IL LAVORO POSITIVO; IL LAVORO POSITIVO IL LAVORO NEGATIVO; IL LAVORO NEGATIVO IL LAVORO NULLO; IL LAVORO NULLO LA POTENZA; LA POTENZA.
RISPOSTA ALL'ECCITAZIONE ARMONICA - SISTEMA NON SMORZATO Forza impressa equaz. del moto: rapporto di frequenza per La risposta è la sovrapposizione di.
Le equazioni di Maxwell
Sensori di posizione.
Spettrometro FT-NMR
Interferometro di Michelson e
Definizione di lavoro Energia potenziale Potenza
Attrito Nel contatto tra due corpi c’è sempre l’attrito.
RISPOSTA ALL'ECCITAZIONE NON PERIODICA NEL DOMINIO DEL TEMPO
La seguente animazione mostra come in una luce linearmente polarizzata il vettore campo elettrico oscilla lunga una e una sola direzione (quella z, nella.
Laboratorio di Chimica Fisica 3 (3 CFU)
Interferenza onde meccaniche
OSCILLATORI ARMONICI La guerra è il massacro di persone
Chimica Fisica II Scienza dei Materiali NMR 1^ Parte
Definizioni delle grandezze rotazionali
LA FISICA.
Onde elettromagnetiche
Lavoro potenza energia quantità di moto
ELEMENTI DI DINAMICA DELLE STRUTTURE
Sistema di riferimento su una retta
Università degli Studi di Napoli
VELOCITA’ E ACCELERAZIONE ANGOLARE
Tempo di rilassamento longitudinale
Introduzione Tipi di deformazioni: Elastica (reversibile)
Magnetostatica 2 Legge di Biot-Savart Prima formula di Laplace
Antonelli Roberto Le forze.
L’interazione della luce con la materia
Fisica: lezioni e problemi
Un’onda è prodotta da un MOTO ARMONICO
Metodologie Chimiche I: Spettroscopia Ambientale
Le onde elettromagnetiche
Un'onda è una perturbazione che si
COSA SONO I CAMPI ELETTROMAGNETICI
ANALISI SPETTROSCOPICA
Teoria delle pertubazioni
e conservazione della quantità di moto
Fisica 2 12° lezione.
Equazione di Schroedinger dipendente dal tempo
ONDE (seconda parte) 1. Onde stazionarie 2. Risonanza
Stati di aggregazione dal microscopico della materia al macroscopico:
Capitolo 7 Lavoro ed energia cinetica
Capitolo 9 Quantità di moto e urti
Capitolo 4 Cinematica bidimensionale
E n e r g i a.
La spettroscopia UV-visibile permette transizioni elettroniche
Un'onda è una perturbazione che si
Oscillazioni LC: analisi quantitativa
Precessione B La frequenza di precessione è detta frequenza di Larmor ed è direttamente proporzionale al campo magnetico: w=gB L’equazione del moto di.
Il lavoro misura l'effetto utile di una forza con uno spostamento.
LAVORO di una forza costante
Energia potenziale gravitazionale (della forza-peso)‏
L’atomo di Bohr Pensò che l’emissione di luce da parte degli atomi dipendeva dagli elettroni che ruotavano attorno al nucleo. Attraverso i suoi studi Bohr.
La struttura dell'atomo
Definizioni Moti armonici Propagazione delle onde
Transcript della presentazione:

Chimica Fisica II Scienza dei Materiali 2008-09 NMR 2^ Parte

Due descrizioni della risonanza magnetica Sul dipolo agisce una coppia di forze L’energia del dipolo dipende dalla orientazione rispetto al campo B0 per I = 1/2 vi sono solo due orientazioni consentite Equazione del moto (Newton) soluzione: B0 Z X Y  il dipolo precede attorno Z con frequenza di Larmor due livelli energetici separati da

Physical Review, 1946 Phys. Rev. , 70, 460 (1946) Phys. Rev. , 69, 37 (1946)

Effetto della radiazione a rf si ha risonanza e trasferimento di energia tra il campo B1 della radiazione elettromagnetica e il dipolo che precede attorno a B0 quando B1 ruota nel piano XY con frequenza uguale alla frequenza di Larmor il campo B1 della radiazione elettromagnetica induce transizioni tra i due livelli energetici quando la frequenza è: si ottiene la stessa relazione tra campo esterno e frequenza di risonanza emissione assorbimento la probabilità di assorbimento è uguale a quella di emissione B0 Z X Y  B1

un sistema reale è composto da tanti dipoli.... X Z Y B z In assenza di campo magnetico le popolazioni dei due stati di spin sono eguali MZ=M0 MX=MY=0 o B z In presenza di campo magnetico le popolazioni dei due stati di spin sono diverse, e si instaura una magnetizzazione diversa da zero M0 MX=MY=0 e MZ=M0 sono i valori di equilibrio della magnetizzazione in presenza del campo B. Se il sistema è perturbato la magnetizzazione tenderà a tornare a questi valori alla fine della perturbazione.

un sistema reale è composto da tanti dipoli.... Magnetizzazione: momento magnetico totale (per volume) Valore di equilibrio si hanno più dipoli nello stato con energia minore e l’assorbimento prevale sulla emissione Equazioni di Bloch: i termini di rilassamento portano M al valore di equilibrio T1: rilassamento longitudinale (spin-lattice) T2: rilassamento trasversale (spin-spin)

Sistema di assi rotanti  Se B1 ruota nel piano xy a frequenza  diversa dalla frequenza di precessione (o di Larmor) 0 , non produce effetto sugli spin. E’ conveniente “saltare” sulla giostra con B1: cioè esprimere tutto in un sistema di assi rotanti alla frequenza  di B1 (x, y). Se 0 vedremmo gli spin precedere alla frequenza -0 .  = 0 In risonanza si ha =0 e B1 apparirebbe fisso lungo l’asse rotante x. L’effetto del campo magnetico statico sugli spin non si vedrebbe più, mentre si vedrebbe la magnetizzazione precedere attorno a B1, nel piano xz. Ma se B1 ruota nel piano xy alla frequenza 0, fa precedere la magnetizzazione attorno alla direzione di B1.

Dinamica nel sistema rotante: dispersione e assorbimento Nel sistema rotante con frequenza  il campo B1 è fisso lungo X e il campo Zeeman B0 è ridotto di un fattore proporzionale a (- 0) Equazioni di Bloch nel sistema rotante B0 Z X Y M B1(t) frequenza rf.  frequenza di Larmor 0 Il segnale sperimentale è indotto dalla variazione temporale della magnetizzazione. Quindi Mx(t) e My(t) costituiscono il segnale NMR. La componente Mx(t) è in fase con B1(t), ed è detta dispersione,, la componente My(t) è in quadratura di fase con B1(t) ed è detta assorbimento.

Soluzione stazionaria Risolvendo le equazioni di Bloch in condizioni stazionarie si trovano le espressioni per Mx e My. 0  La forma della riga di assorbimento è: 2/T2 riga lorenziana

NMR in onda continua a trasformata di Fourier FT 0 0  campo oscillante continuo continuous wave (CW) impulso di durata   pulse 0  0 FT Lo spettro si registra mentre viene variata la frequenza della radiazione a radiofrequenza. Si invia un impulso di durata  alla frequenza 0 (centro dello spettro), e si raccoglie il segnale in funzione del tempo. La FT di questo segnale dà lo spettro in frequenza.

Spettroscopia in funzione della frequenza : modello meccanico Una massa attaccata ad una molla soggetta ad una forza che varia sinusoidalmente entra in uno stato di oscillazione stazionaria (“risposta”) alla stessa frequenza della forza ma con fase diversa. Lo spostamento della massa può essere analizzato scomponendolo nella somma in due componenti, una esattamente “in fase” con la forza (x’) e l’altra esattamente fuori fase di 90°, x’’.

Se l’esperimento è compiuto a molte frequenze diverse  di oscillazione della forza, allora le dipendenze di x’ e x’’ da  sono gli spettri di dispersione e assorbimento. Riga lorenziana in assorbimento: corrisponde al segnale NMR in onda continua.

Spettroscopia in funzione del tempo : modello meccanico x0 La massa m viene spostata dalla posizione di equilibrio di x0 e quindi lasciata andare. E’ riportato il segnale in funzione del tempo.

Modalità di rappresentazione spettrale Spettroscopie in funzione della frequenza e in funzione del tempo: le informazioni contenute sono le stesse!   F () FT f (t )

Descrizione dell’esperimento di NMR impulsato: l’impulso e le frequenze = * tp La radiazione a radiofrequenza 0 viene impulsata. FT wo 0  La trasformata di Fourier dell’impulso contiene un intervallo di frequenze  centrate a 0

Descrizione dell’esperimento di NMR impulsato: l’impulso e l’angolo  angolo di rotazione della magnetizzazione Il campo B1 resta acceso per la durata dell’impulso tp. Nel sistema di assi rotanti la magnetizzazione precede e compie un angolo  : B0 z x y M() B1 M(0)   = 1tp = B1etp

Descrizione dell’esperimento di NMR impulsato: l’impulso /2 x y 1tp = Impulso  La durata dell’impulso tp e il campo B1 possono essere scelti in modo che  = /2 L’impulso porta M sul piano xy. Dopo l’impulso consideriamo cosa succede: a. nel sistema di assi di laboratorio b. nel sistema di assi rotanti.

Descrizione dell’esperimento di NMR impulsato: Free Induction Decay (FID) Nel sistema di laboratorio la magnetizzazione precede nel piano xy alla frequenza 0… B0 Z M 0 …producendo una corrente nella spira del rilevatore Segnale

Descrizione dell’esperimento di NMR impulsato: Free Induction Decay (FID) Il segnale raccolto dalla spira ha la frequenza di Larmor, ma viene trattato confrontandolo con una frequenza di riferimento. Solo la differenza in frequenza tra il segnale raccolto dalla spira e il segnale di riferimento viene rivelato. Se il segnale di riferimento è a 0 la differenza di frequenza è nulla e si registra un segnale continuo... proprio come se si fosse nel sistema rotante!

z x y t Nel sistema rotante a 0 la magnetizzazione viene ruotata lungo y e decade quindi nel tempo con l’esponenziale exp (-t/T2)sempre restando lungo y. Se il segnale di riferimento è a  la differenza di frequenza è  - 0 e si registra un segnale oscillante a questa frequenza...

FID Eco

Angolo di rotazione (nel sistema rotante) x y 1 = Impulso  Esempi di impulsi B0 z x y M() B1 M(0)  = 1 = B1e Angolo di rotazione (nel sistema rotante) z x y 1 = Impulso 

Inversion Recovery  t = 0 t M(t) = M0 [1  2 exp(t/T1)] z x y z x y t M(t) = M0 [1  2 exp(t/T1)] L’impulso rovescia il verso di M. Dopo l’impulso si rileva il decadimento libero della magnetizzazione longitudinale ed il ritorno al valore di equilibrio che avviene con velocità 1/T1.

Esempio di spettro NMR - L’impulso rovescia il verso di M. Dopo l’impulso si rileva il decadimento libero della magnetizzazione longitudinale ed il ritorno al valore di equilibrio che avviene con velocità 1/T1.

Esempio di spettro NMR - L’impulso rovescia il verso di M. Dopo l’impulso si rileva il decadimento libero della magnetizzazione longitudinale ed il ritorno al valore di equilibrio che avviene con velocità 1/T1.