Progettazione di un Sistema Irriguo

Slides:



Advertisements
Presentazioni simili
Modelli di simulazione Programmi computerizzati che simulano sistemi mediante la loro descrizione in termini di equazioni un sistema è un insieme di flussi.
Advertisements

Modello aziendale di irrigazione
EVAPOTRASPIRAZIONE = + CONSUMI IDRICI DI UNA COLTURA
Le relazioni idriche delle piante
Il modello ARNO Il processo di immagazzinamento di umidità in un generico punto del bacino è rappresentato mediante un semplice serbatoio di capacità c’
Equivalenze tra i sistemi C.G.S. e SI:
CONSUMI IDRICI DELLE COLTURE
PROPRIETA’ DELL’ACQUA molecola asimmetricadipolo il lato positivo è attratto da cariche negative carattere bipolare dell’acqua il lato negativo è attratto.
MODELLO DI SIMULAZIONE PER UNA GESTIONE RAZIONALE DELL'IRRIGAZIONE Prof. Fabrizio Quaglietta Chiarandà - Università di Napoli Federico II Prof. Marco Acutis.
Table View. Problemi ricorrenti Una situazione ricorrente è quella in cui il controller potrebbe avere un’altezza superiore a quella dello schermo. In.
- Via Vetri Vecchi 34, San Giovanni Valdarno (AR) “La prova Triassiale Ciclica: teoria ed applicazioni di laboratorio”
Lezione n.5 (Corso di termodinamica) Termodinamica degli stati: superficie caratteristica e piani termodinamici.
1 Fenomeni di Trasporto – Adimensionalizzazione eq. termica Analisi dimensionale delle equazioni di variazione L’analisi dimensionale consente: -L’introduzione.
Indici di Posizione Giulio Vidotto Raffaele Cioffi.
Consentono di descrivere la variabilità all’interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche.
Progettazione di un Sistema Irriguo
11 – Il ciclo idrologico Corso di “Geografia fisica”
Corso di Laurea Magistrale in Produzioni agroalimentari e gestione degli agroecosistemi corso di Tecniche Irrigue Docente, PhD Giovanni Rallo telefono:
Progettazione di un Sistema Irriguo
Elementi di Agronomia Marco Mazzoncini -
Il ciclo dell’acqua.
Idrosfera e ciclo dell’acqua
I Modulo Corso Istruttori I Livello
Il carico idraulico LM-75: 2016/2017
Valutazione dell’incertezza associata alla mappa acustica dinamica di Milano Giovanni Zambon; Roberto Benocci; Maura Smiraglia; H. Eduardo Roman.
Fonti di approvvigionamento dell’acqua
RISPOSTA ALL'ECCITAZIONE NON PERIODICA NEL DOMINIO DEL TEMPO
A.Ga.Mon. Visita Ispettiva 13/07/2011 TEA D. Picciaia
Formule chimiche e composizione percentuale
La valutazione dei servizi ecosistemici tramite
L’IRRIGAZIONE NEL PROTOCOLLO DELLA BARBABIETOLA DA ZUCCHERO
13/11/
Pompe per acqua I principali parametri caratteristici delle pompe per il sollevamento, trasferimento e alimentazione dell’acqua sono: Portata Q [m3/s];
Università degli Studi di Ferrara Dipartimento di Ingegneria
Nino Pasquale, Vanino Silvia
RADIAZIONI.
Il modello ARNO Il processo di immagazzinamento di umidità in un generico punto del bacino è rappresentato mediante un semplice serbatoio di capacità c’
L’evapotraspirazione
La reazione inversa non è spontanea !!
Il carico idraulico LM-75: 2017/2018
Intervalli di Fiducia Introduzione Intervalli di fiducia per la media – Caso varianza nota Intervalli di fiducia per la media – Caso varianza non nota.
Velocità dei soluti in una separazione cromatografica Il soluto si muove lungo la colonna cromatografica solo quando si trova in fase mobile.
Temperatura dell’aria
12 – Climi Corso di “Geografia fisica” Scuola di Scienze e Tecnologie
Distillazione È un processo in cui una miscela liquida o allo stato di vapore di due o più sostanze è separata nelle frazioni componenti di purezza.
Esercitazione di Statistica Economica
13/11/
Esercitazione di Statistica Economica
RAPPORTI ACQUA-TERRENO
I Livelli di Servizio in condizioni di deflusso ininterrotto
L’acqua nell’atmosfera
FOTOVOLTAICO LA RADIAZIONE SOLARE.
PROCEDURA per la misura e la relativa stima
- velocità dell’auto v = 80 km/h;
RETEISSA Corsi di potenziamento e di preparazione ai test di ingresso per i corsi di laurea a numero programmato Corso di Fisica Test di ingresso per il.
Equivalenze tra i sistemi C.G.S. e SI:
Università degli Studi di Ferrara Dipartimento di Ingegneria
Università degli Studi di Ferrara Dipartimento di Ingegneria
CAPITOLO 10 Importanza delle collisioni nel Sistema Solare
Business Planning Dall’idea al progetto imprenditoriale
TITOLO II LUOGHI DI LAVORO
Integrale Definito Integrale Indefinito Integrale Definito
Precorso di Fisica 2011/2012 Facoltà di Agraria
GESTIONE REGIONALE SISTEMI IRRIGUI IN AUTO-AP. E PUBBLICI
Gli Indici di Produttività di Divisia
"Quantitative Water Air Sediment Interaction" (Versione 3.10)
ANALISI DEL FORBUSH Extreme Energy Events.
Flusso del campo elettrico e teorema di Gauss
I liquidi e loro proprietà
BioMa Framework Piattaforma estendibile per diversi modelli biofisici.
Transcript della presentazione:

Progettazione di un Sistema Irriguo TECNICHE IRRIGUE Progettazione di un Sistema Irriguo

IRRIGAZIONE: Attività e strutture umane Human activities and structures, as depicted by the distribution of various examples in the conceptual landscape, affect the interaction of ground water and surface water in all types of landscapes (www.usgs.gov)

WUE: NESTED APPROACH q(h) J(q;D) λ(q;D*) RWU Tr P(Q;H;h) SPAC DISTRIBUTION SYSTEM WATER RESOURCE

Fasi per la progettazione di un Sistema Irriguo

F0 – Archiviazione e gestione delle cartelle PROGETTO: cartella principale da salvare sull’unità disco

F1 – Inquadramento territoriale e agro-ambientale F1,a - Inquadramento Geografico del Territorio OLIVETO HD Lat. 43.019583° Long. 10.605951° LAVANDA RDI --.------° ACTINIDIA --.------°

F1 – Inquadramento territoriale e agro-ambientale F1,b - Agrometeorologia Cosa fare? Selezionare dal sito SIT/SAT le tre stazioni prossime al vostro sito; 2) Richiedere/Scaricare le serie di dati (almeno 10 anni) giornalieri: Temperatura massima e minima dell’aria Umidità relativa dell’aria Velocità del vento 3) Salvare i dati RAW (grezzi: *.txt oppure *.asce) nella cartella RAW DATA; 4) Organizzare i dati per colonne (una colonna per variabile) in un foglio excel e controllare l’uniformità cronologica ed inserire NAN per le date mancanti. La matrice data deve essere continua, no buchi temporali.

F1 – Inquadramento territoriale e agro-ambientale F1,c - Pedologia Cosa fare? Selezionare dal sito GEOSCOPIO la cartografia tematica relativa al suolo (tipo suolo, granulometria e/o classe di tessitura); Implementare tutti dati disponibili per il vostro sito in una tabella

ET0 : Empirical approach, H-S modificato FAO Evapotraspirazione di riferimento ET0 : Empirical approach, H-S modificato FAO ………. oppure applicando la procedura semplificata proposta da Hargreaves-Samani: Tmean = Temperatura media dell’aria [°C] Tmax = Temperatura massima dell’aria [°C] Tmin = Temperatura minima dell’aria [°C] Ra = Radiazione solare extraterrestre [mm d-1] Ra Il modello tiene conto delle domanda ambientale attraverso l’equazione di Penmann-Monteith e permette di calcolare i flussi evapotraspirativi effettivi sulla base di coefficienti riduttivi dei tassi traspirativi ed evaporativi. -Il modello richiede in input i dati meteo per la determinazione dell’evepotraspirazine di riferimento -parametri relativi alla coltura quali l’altezza della canopy e profondita dell’apparato radicale, nonché il coefficiente colturale basale per la determinazione della traspirazione potenziale ed il coefficiente di evaporazione per la stima dei flussi evaporativi dal suolo. -i parametri relativi al suolo sono rappresentati dalle constanti idrologiche che insieme alla profondità delle radici dettano la geometria del serbatoio -nella fase di validazione del modello stesso anche l’irrigazione rappresenta un dato di input Una volta calcolati i flussi evaporativi dal suolo e traspirativi dalla pianta il modello determina giornalmente il valore della deplezione ovvero del quantitativo di acqua necessario per portare il volume di suolo considerato, dalle condizioni di umidità in cui si trova alla capacità di campo. Definita inoltre l’acqua disponibile totale e quella prontamente disponibile per la pianta, il modello determina i coefficienti di stress Ks riduttivi dei flussi traspirativi; con una computazione analoga il modello si calcola i coefficienti riduttivi della componente evaporativa dal suolo. La computazione di questi coefficienti riduttivi dell’evaporazione dal suolo e della traspirazione dalla pianta, permette, di trasformare i flussi potenziali in effettivi. Pertanto il modello fornisce in uscita i flussi in termini effettivi, i volumi di adacquamento e, conoscendo la deplezione giornaliera, i contenuti idrici medi del suolo.

ET0 : Empirical approach, H-S modificato FAO Evapotraspirazione di riferimento ET0 : Empirical approach, H-S modificato FAO Calcolo della Radiazione solare extraterrestre, Ra: Ra= Radiazione Solare Extraterrestre [MJ m-2 day-1] Gsc= Costante solare=0.0820 [MJ m-2 min-1] dr = Inverso distanza sole-terra [rad] ωs= sunset hour angle [rad] φ= latitudine [rad] δ= declinazione solare [rad] Il modello tiene conto delle domanda ambientale attraverso l’equazione di Penmann-Monteith e permette di calcolare i flussi evapotraspirativi effettivi sulla base di coefficienti riduttivi dei tassi traspirativi ed evaporativi. -Il modello richiede in input i dati meteo per la determinazione dell’evepotraspirazine di riferimento -parametri relativi alla coltura quali l’altezza della canopy e profondita dell’apparato radicale, nonché il coefficiente colturale basale per la determinazione della traspirazione potenziale ed il coefficiente di evaporazione per la stima dei flussi evaporativi dal suolo. -i parametri relativi al suolo sono rappresentati dalle constanti idrologiche che insieme alla profondità delle radici dettano la geometria del serbatoio -nella fase di validazione del modello stesso anche l’irrigazione rappresenta un dato di input Una volta calcolati i flussi evaporativi dal suolo e traspirativi dalla pianta il modello determina giornalmente il valore della deplezione ovvero del quantitativo di acqua necessario per portare il volume di suolo considerato, dalle condizioni di umidità in cui si trova alla capacità di campo. Definita inoltre l’acqua disponibile totale e quella prontamente disponibile per la pianta, il modello determina i coefficienti di stress Ks riduttivi dei flussi traspirativi; con una computazione analoga il modello si calcola i coefficienti riduttivi della componente evaporativa dal suolo. La computazione di questi coefficienti riduttivi dell’evaporazione dal suolo e della traspirazione dalla pianta, permette, di trasformare i flussi potenziali in effettivi. Pertanto il modello fornisce in uscita i flussi in termini effettivi, i volumi di adacquamento e, conoscendo la deplezione giornaliera, i contenuti idrici medi del suolo.

F1 – Inquadramento territoriale e agro-ambientale F1,d – Idrologia del suolo Cosa fare? Utilizzare i dati relativo al suolo provenienti dalla F1,b; Parametrizzare il modello di van Genuchten per la SWRC Stimare la capacità di campo e il punto di appassimento;

Curva di Ritenzione Idrica Modello van Genuchten

Curva di Ritenzione Idrica Modello van Genuchten Db

PTF per la stima della Bulk Density Curva di Ritenzione Idrica - PTF PTF per la stima della Bulk Density

How irrigate  to choose the method to supply water to crop WUE: PRECISION IRRIGATION How irrigate  to choose the method to supply water to crop How much irrigate  determining crop water need as well as the volume for each irrigation When irrigate (Timing Irrigation)  Individuation of the most appropriate time to schedule irrigation

WUE: How Much Irrigate  Agro-Hydrological model approach Il modello FAO-56 Modello del tipo a serbatoio che simula, attraverso delle funzioni di esaurimento, l’evoluzione della riserva idrica nel volume di suolo interessato dall’apparato radicale. Nel modello FAO viene simulata attraverso funzioni di esaurimento la variazione della riserva idrica del volume di suolo interessato dall’apparato radicale. www.kimberly.uidaho.edu

Il Modello FAO56: Caratteristiche del Serbatoio WUE: How Much Irrigate  Agro-Hydrological model approach Il Modello FAO56: Caratteristiche del Serbatoio TAW RAW De Nei modelli semplificati, invece, i processi di scambio vengono descritti attraverso relazioni semplificate e la dinamica dei flussi idrici viene schematizzata attraverso le variazioni medie che avvengono all’interno di un volume di suolo considerato come un serbatoio. La geometria di questo serbatoio e regolata oltre che dalla potenza dell’apparato radicale anche dalle costanti idrologiche del suolo. θsat  Contenuto idrico a saturazione [cm3 cm-3] Zr θfc  Contenuto idrico alla capacità di campo [cm3 cm-3] θp  Contenuto idrico critico [cm3 cm-3] θi θwp  Contenuto idrico al punto di appassimento [cm3 cm-3]

Il modello FAO56: l’equazione di bilancio WUE: How Much Irrigate  Agro-Hydrological model approach Il modello FAO56: l’equazione di bilancio De,i: deplezione computata alla fine del giorno i-esimo [mm] De,i-1: deplezione computata al giorno precedente [mm] Pe,i: precipitazione efficace al giorno i-esimo [mm] RO,i: deflusso superficiale al giorno i-esimo [mm] Ie,i: irrigazione efficace [mm] CR,i: risalita capillare di falda [mm] ETc,i: evapotraspirazione colturale [mm] DP,i: percolazione profonda [mm] Il modello tiene conto delle domanda ambientale attraverso l’equazione di Penmann-Monteith e permette di calcolare i flussi evapotraspirativi effettivi sulla base di coefficienti riduttivi dei tassi traspirativi ed evaporativi. -Il modello richiede in input i dati meteo per la determinazione dell’evepotraspirazine di riferimento -parametri relativi alla coltura quali l’altezza della canopy e profondita dell’apparato radicale, nonché il coefficiente colturale basale per la determinazione della traspirazione potenziale ed il coefficiente di evaporazione per la stima dei flussi evaporativi dal suolo. -i parametri relativi al suolo sono rappresentati dalle constanti idrologiche che insieme alla profondità delle radici dettano la geometria del serbatoio -nella fase di validazione del modello stesso anche l’irrigazione rappresenta un dato di input Una volta calcolati i flussi evaporativi dal suolo e traspirativi dalla pianta il modello determina giornalmente il valore della deplezione ovvero del quantitativo di acqua necessario per portare il volume di suolo considerato, dalle condizioni di umidità in cui si trova alla capacità di campo. Definita inoltre l’acqua disponibile totale e quella prontamente disponibile per la pianta, il modello determina i coefficienti di stress Ks riduttivi dei flussi traspirativi; con una computazione analoga il modello si calcola i coefficienti riduttivi della componente evaporativa dal suolo. La computazione di questi coefficienti riduttivi dell’evaporazione dal suolo e della traspirazione dalla pianta, permette, di trasformare i flussi potenziali in effettivi. Pertanto il modello fornisce in uscita i flussi in termini effettivi, i volumi di adacquamento e, conoscendo la deplezione giornaliera, i contenuti idrici medi del suolo.

Il modello FAO56: calcolo di ETc WUE: How Much Irrigate  Agro-Hydrological model approach Il modello FAO56: calcolo di ETc Single Crop Coefficient Approach (Kc) gli effetti della traspirazione della coltura e dell’evaporazione dal suolo vengono combinati in un unico coefficiente ETc=ET0 Kc Dual Crop Coefficient Approach (Kcb+Ke) gli effetti della traspirazione della coltura e dell’evaporazione dal suolo vengono computati separatamente ETc=ET0 (Kcb+Ke) Il modello tiene conto delle domanda ambientale attraverso l’equazione di Penmann-Monteith e permette di calcolare i flussi evapotraspirativi effettivi sulla base di coefficienti riduttivi dei tassi traspirativi ed evaporativi. -Il modello richiede in input i dati meteo per la determinazione dell’evepotraspirazine di riferimento -parametri relativi alla coltura quali l’altezza della canopy e profondita dell’apparato radicale, nonché il coefficiente colturale basale per la determinazione della traspirazione potenziale ed il coefficiente di evaporazione per la stima dei flussi evaporativi dal suolo. -i parametri relativi al suolo sono rappresentati dalle constanti idrologiche che insieme alla profondità delle radici dettano la geometria del serbatoio -nella fase di validazione del modello stesso anche l’irrigazione rappresenta un dato di input Una volta calcolati i flussi evaporativi dal suolo e traspirativi dalla pianta il modello determina giornalmente il valore della deplezione ovvero del quantitativo di acqua necessario per portare il volume di suolo considerato, dalle condizioni di umidità in cui si trova alla capacità di campo. Definita inoltre l’acqua disponibile totale e quella prontamente disponibile per la pianta, il modello determina i coefficienti di stress Ks riduttivi dei flussi traspirativi; con una computazione analoga il modello si calcola i coefficienti riduttivi della componente evaporativa dal suolo. La computazione di questi coefficienti riduttivi dell’evaporazione dal suolo e della traspirazione dalla pianta, permette, di trasformare i flussi potenziali in effettivi. Pertanto il modello fornisce in uscita i flussi in termini effettivi, i volumi di adacquamento e, conoscendo la deplezione giornaliera, i contenuti idrici medi del suolo.

L’ Evapotraspirazione WUE: How Much Irrigate  Agro-Hydrological model approach L’ Evapotraspirazione ET0, Evapotrasp. della Coltura di Riferimento ETp, Evapotrasp. Potenziale della Coltura ETe, Evapotrasp. Effettiva della Coltura

L’ Evapotraspirazione WUE: How Much Irrigate  Agro-Hydrological model approach L’ Evapotraspirazione ET0 Evapotrasp. della coltura di riferimento ETp Evapotrasp. Potenziale della coltura ETe Evapotrasp. Effettiva della coltura

Evapotraspirazione di riferimento, ET0 WUE: How Much Irrigate  Agro-Hydrological model approach Evapotraspirazione di riferimento, ET0 Si definisce Evapotraspirazione di Riferimento (Reference Evapotranspiration), ET0. la quantità di acqua persa per evapotraspirazione da una superficie costituita da una coltura di riferimento sotto le ipotesi: ricoprimento uniforme del terreno condizioni vegetative ottimali rifornimento d’acqua tale che la traspirazione avvenga senza alcun impedimento e sia la massima possibile La Coltura di Riferimento, secondo le direttive della FAO, può essere rappresentato da un prato di festuca o erba medica che presenti senza alcuna ambiguità le seguenti caratteristiche: sia ben irrigato altezza uniforme = 0.12 m resistenza di superficie = 70 s/m albedo = 0.23 Il modello tiene conto delle domanda ambientale attraverso l’equazione di Penmann-Monteith e permette di calcolare i flussi evapotraspirativi effettivi sulla base di coefficienti riduttivi dei tassi traspirativi ed evaporativi. -Il modello richiede in input i dati meteo per la determinazione dell’evepotraspirazine di riferimento -parametri relativi alla coltura quali l’altezza della canopy e profondita dell’apparato radicale, nonché il coefficiente colturale basale per la determinazione della traspirazione potenziale ed il coefficiente di evaporazione per la stima dei flussi evaporativi dal suolo. -i parametri relativi al suolo sono rappresentati dalle constanti idrologiche che insieme alla profondità delle radici dettano la geometria del serbatoio -nella fase di validazione del modello stesso anche l’irrigazione rappresenta un dato di input Una volta calcolati i flussi evaporativi dal suolo e traspirativi dalla pianta il modello determina giornalmente il valore della deplezione ovvero del quantitativo di acqua necessario per portare il volume di suolo considerato, dalle condizioni di umidità in cui si trova alla capacità di campo. Definita inoltre l’acqua disponibile totale e quella prontamente disponibile per la pianta, il modello determina i coefficienti di stress Ks riduttivi dei flussi traspirativi; con una computazione analoga il modello si calcola i coefficienti riduttivi della componente evaporativa dal suolo. La computazione di questi coefficienti riduttivi dell’evaporazione dal suolo e della traspirazione dalla pianta, permette, di trasformare i flussi potenziali in effettivi. Pertanto il modello fornisce in uscita i flussi in termini effettivi, i volumi di adacquamento e, conoscendo la deplezione giornaliera, i contenuti idrici medi del suolo.

ET0 : Bigleaf approach, P-M mod. FAO WUE: How Much Irrigate  Agro-Hydrological model approach ET0 : Bigleaf approach, P-M mod. FAO L’Evapotraspirazione di Riferimento, ET0. può essere determinata o seguendo il modello più complesso di Penman-Monteith modificato FAO: Δ= pendenza della curva di pressione di vapore d’acqua a saturazione [kPa/°C] Rn = Radiazione netta [MJ/(m2 giorno)] G = flusso di calore dal suolo ≈ 0 [MJ/(m2 giorno)] T = Temp. media [°C] u2 = velocità del vento a 2 metri dal suolo [m/s] g = costante psicometrica [kPa/°C] ea = pressione attuale di vapore [kPa] es = pressione di vapore saturo alla temp. T [kPa] Il modello tiene conto delle domanda ambientale attraverso l’equazione di Penmann-Monteith e permette di calcolare i flussi evapotraspirativi effettivi sulla base di coefficienti riduttivi dei tassi traspirativi ed evaporativi. -Il modello richiede in input i dati meteo per la determinazione dell’evepotraspirazine di riferimento -parametri relativi alla coltura quali l’altezza della canopy e profondita dell’apparato radicale, nonché il coefficiente colturale basale per la determinazione della traspirazione potenziale ed il coefficiente di evaporazione per la stima dei flussi evaporativi dal suolo. -i parametri relativi al suolo sono rappresentati dalle constanti idrologiche che insieme alla profondità delle radici dettano la geometria del serbatoio -nella fase di validazione del modello stesso anche l’irrigazione rappresenta un dato di input Una volta calcolati i flussi evaporativi dal suolo e traspirativi dalla pianta il modello determina giornalmente il valore della deplezione ovvero del quantitativo di acqua necessario per portare il volume di suolo considerato, dalle condizioni di umidità in cui si trova alla capacità di campo. Definita inoltre l’acqua disponibile totale e quella prontamente disponibile per la pianta, il modello determina i coefficienti di stress Ks riduttivi dei flussi traspirativi; con una computazione analoga il modello si calcola i coefficienti riduttivi della componente evaporativa dal suolo. La computazione di questi coefficienti riduttivi dell’evaporazione dal suolo e della traspirazione dalla pianta, permette, di trasformare i flussi potenziali in effettivi. Pertanto il modello fornisce in uscita i flussi in termini effettivi, i volumi di adacquamento e, conoscendo la deplezione giornaliera, i contenuti idrici medi del suolo.

ET0 : Empirical approach, H-S modificato FAO WUE: How Much Irrigate  Agro-Hydrological model approach ET0 : Empirical approach, H-S modificato FAO ………. oppure applicando la procedura semplificata proposta da Hargreaves-Samani: Tmean = Temperatura media dell’aria [°C] Tmax = Temperatura massima dell’aria [°C] Tmin = Temperatura minima dell’aria [°C] Ra = Radiazione solare extraterestre [MJ m-2 d-1] Ra Il modello tiene conto delle domanda ambientale attraverso l’equazione di Penmann-Monteith e permette di calcolare i flussi evapotraspirativi effettivi sulla base di coefficienti riduttivi dei tassi traspirativi ed evaporativi. -Il modello richiede in input i dati meteo per la determinazione dell’evepotraspirazine di riferimento -parametri relativi alla coltura quali l’altezza della canopy e profondita dell’apparato radicale, nonché il coefficiente colturale basale per la determinazione della traspirazione potenziale ed il coefficiente di evaporazione per la stima dei flussi evaporativi dal suolo. -i parametri relativi al suolo sono rappresentati dalle constanti idrologiche che insieme alla profondità delle radici dettano la geometria del serbatoio -nella fase di validazione del modello stesso anche l’irrigazione rappresenta un dato di input Una volta calcolati i flussi evaporativi dal suolo e traspirativi dalla pianta il modello determina giornalmente il valore della deplezione ovvero del quantitativo di acqua necessario per portare il volume di suolo considerato, dalle condizioni di umidità in cui si trova alla capacità di campo. Definita inoltre l’acqua disponibile totale e quella prontamente disponibile per la pianta, il modello determina i coefficienti di stress Ks riduttivi dei flussi traspirativi; con una computazione analoga il modello si calcola i coefficienti riduttivi della componente evaporativa dal suolo. La computazione di questi coefficienti riduttivi dell’evaporazione dal suolo e della traspirazione dalla pianta, permette, di trasformare i flussi potenziali in effettivi. Pertanto il modello fornisce in uscita i flussi in termini effettivi, i volumi di adacquamento e, conoscendo la deplezione giornaliera, i contenuti idrici medi del suolo.

Il modello FAO56: calcolo di ETc WUE: How Much Irrigate  Agro-Hydrological model approach Il modello FAO56: calcolo di ETc Single Crop Coefficient Approach (Kc) gli effetti della traspirazione della coltura e dell’evaporazione dal suolo vengono combinati in un unico coefficiente ETc=ET0 Kc Dual Crop Coefficient Approach (Kcb+Ke) gli effetti della traspirazione della coltura e dell’evaporazione dal suolo vengono computati separatamente ETc=ET0 (Kcb+Kce) Il modello tiene conto delle domanda ambientale attraverso l’equazione di Penmann-Monteith e permette di calcolare i flussi evapotraspirativi effettivi sulla base di coefficienti riduttivi dei tassi traspirativi ed evaporativi. -Il modello richiede in input i dati meteo per la determinazione dell’evepotraspirazine di riferimento -parametri relativi alla coltura quali l’altezza della canopy e profondita dell’apparato radicale, nonché il coefficiente colturale basale per la determinazione della traspirazione potenziale ed il coefficiente di evaporazione per la stima dei flussi evaporativi dal suolo. -i parametri relativi al suolo sono rappresentati dalle constanti idrologiche che insieme alla profondità delle radici dettano la geometria del serbatoio -nella fase di validazione del modello stesso anche l’irrigazione rappresenta un dato di input Una volta calcolati i flussi evaporativi dal suolo e traspirativi dalla pianta il modello determina giornalmente il valore della deplezione ovvero del quantitativo di acqua necessario per portare il volume di suolo considerato, dalle condizioni di umidità in cui si trova alla capacità di campo. Definita inoltre l’acqua disponibile totale e quella prontamente disponibile per la pianta, il modello determina i coefficienti di stress Ks riduttivi dei flussi traspirativi; con una computazione analoga il modello si calcola i coefficienti riduttivi della componente evaporativa dal suolo. La computazione di questi coefficienti riduttivi dell’evaporazione dal suolo e della traspirazione dalla pianta, permette, di trasformare i flussi potenziali in effettivi. Pertanto il modello fornisce in uscita i flussi in termini effettivi, i volumi di adacquamento e, conoscendo la deplezione giornaliera, i contenuti idrici medi del suolo.