Avviare la presentazione col tasto “Invio”

Slides:



Advertisements
Presentazioni simili
CINEMATICA SINTESI E APPUNTI.
Advertisements

Velocità ed accelerazione
Grandezze scalari e vettoriali
Esempio 1 Un bombardiere vola con velocità orizzontale vx costante di 400 km/h ad una altezza di 3000 m dirigendosi verso un punto che si trova esattamente.
Esempio 1 Consideriamo un punto materiale che effettua un moto particolare lungo l’asse x. Supponiamo per esempio che la particella parta da un punto.
Moti piani (moti in due dimensioni)
(descrizione quantitativa del moto dei corpi)
© Nichi D'Amico1 Lezione II – terza parte Avviare la presentazione col tasto “Invio”
1 Lezione IX – quarta parte Avviare la presentazione col tasto “Invio”
VETTORI: DEFINIZIONI Se ad una grandezza fisica G si associa una direzione ed un verso si parla di vettori: ✔ Le grandezze fisiche possono essere di due.
Rappresentazione del moto in grafico spazio/tempo Rappresentazione del moto in grafico spazio/tempo Cosa accade tra t i e t f ? Cosa accade tra t i e t.
La goniometria si occupa della misura degli angoli e delle relative funzioni. La trigonometria studia i procedimenti di calcolo che permettono di determinare.
Cinematica Breve riepilogo che non può sostituire il programma svolto nel biennio. Verificate di essere in grado di leggerlo e comprenderlo. Prendete nota.
Definizione Sistemi isolati Teorema degli impulsi Moto di un razzo
Le tre grandezze fisiche fondamentali in cinematica sono:
Le funzioni matematiche e il piano cartesiano
Avviare la presentazione col tasto “Invio”
Avviare la presentazione col tasto “Invio”
Induzione Elettromagnetica
Definizione di lavoro Energia potenziale Potenza
Attrito Nel contatto tra due corpi c’è sempre l’attrito.
Il Movimento Cinematica.
Posizione di un punto nello spazio
Avviare la presentazione col tasto “Invio”
Definizioni delle grandezze rotazionali
Avviare la presentazione col tasto “Invio”
Sistema di riferimento su una retta
Avviare la presentazione col tasto “Invio”
Come si misurano gli angoli
Meccanica Cinematica del punto materiale Dinamica
Equazioni differenziali
Il Movimento Cinematica
Le trasformazioni nel piano cartesiano
Avviare la presentazione col tasto “Invio”
VELOCITA’ E ACCELERAZIONE ANGOLARE
Magnetostatica 2 Legge di Biot-Savart Prima formula di Laplace
Antonelli Roberto Le forze.
Lezioni di fisica e laboratorio
La terra fa parte del sistema solare. Il sistema solare è costituito da una stella, il Sole, da 8 pianeti tra cui la terra e altri corpi di massa minore.
Fisica, Fitness & Aritmetica
Y Y j R i mg sin θ i -mg cos θ j θ mg X θ
Cinematica Rotazionale
1. Vettore posizione e vettore spostamento
Grafico spazio-tempo del moto rettilineo uniforme di un'automobile.
Il concetto di “punto materiale”
RETEISSA Corsi di potenziamento e di preparazione ai test di ingresso per i corsi di laurea a numero programmato Corso di Fisica Test di ingresso per il.
LA RETTA.
Parte II: Cinematica del punto
Unità 5 I vettori.
Il moto e la quiete.
Riassunto Grandezze scalari: modulo (es. il tempo, la massa, la temperatura): numero e una unità di misura Grandezze vettoriali: modulo, direzione e verso.
e conservazione della quantità di moto
Capitolo 2 Cinematica unidimensionale
Il moto rettilineo uniformemente accelerato
Capitolo 6 Applicazioni delle leggi di Newton
Capitolo 3 I vettori in fisica
Capitolo 8 Energia potenziale e conservazione dell’energia
Capitolo 7 Lavoro ed energia cinetica
Capitolo 4 Cinematica bidimensionale
Capitolo 10 Moti rotazionali
Cinematica Rotazionale
4. Il moto circolare uniforme
Precorso di Fisica 2011/2012 Facoltà di Agraria
1. Vettore posizione e vettore spostamento
Definizioni Moti armonici Propagazione delle onde
Flusso del campo elettrico e teorema di Gauss
Risposte Tipiche Questionario Moto e Forza
Risposte tipiche Questionario Grafici Cinematici
Fisica: lezioni e problemi
Transcript della presentazione:

Avviare la presentazione col tasto “Invio” Lezione III Avviare la presentazione col tasto “Invio”

Moti piani (moti in due dimensioni) Consideriamo un punto materiale che si muove lungo una traiettoria curva dal punto P al punto Q nel piano x-y y yQ Q yP P xP xQ x

Consideriamo un punto materiale che si muove lungo una traiettoria curva dal punto P al punto Q nel piano x-y y yQ Q yP P xP xQ x

s = x + y = xP i + yP j y yQ y s x xQ x La posizione iniziale del punto materiale è individuata dal vettore s così definito: s = x + y = xP i + yP j y yQ Q y P s x xQ x

Si, ma in pratica come si calcola La posizione finale del punto materiale è individuata dal vettore risultante dalla somma vettoriale s + Δs Pertanto la velocità media del nostro punto materiale durante Δt sarà : v = Δs / Δt e la direzione e il verso di questo vettore saranno quelli del vettore Δs Applicando il solito processo al limite come abbiamo fatto ne caso unidimensionale: v = lim ( Δs/Δt ) = ds/dt Si, ma in pratica come si calcola la derivata di un vettore ? y yQ Δs Q y P s + Δs x xQ x

E’ facile rendersi conto che mentre il punto materiale si muove lungo la traiettoria curva, e cioè mentre il vettore s cambia direzione e modulo, le sue proiezioni sugli assi x e y si muovono di moto rettilineo (ma non necessariamente uniforme). Le velocità delle proiezioni, e cioè i vettori vx e vy altro non sono che le componenti ortogonali del vettore velocità v vx = dx/dt vy = dy/dt E così siamo in grado di calcolare la derivata del vettore velocità: v = vx + vy y yQ Q yP P xP xQ x

Quando un punto materiale si muove lungo una linea retta, il suo vettore velocità può avere qualsiasi modulo, ma è sempre diretto lungo la retta. Al contrario, quando un punto materiale si muove in un piano, il vettore velocità può avere anche qualsiasi direzione. E poiché la velocità lungo la curva è la somma vettoriale delle velocità componenti lungo gli assi x e y, il vettore velocità risulta sempre tangente alla curva in ciascun punto del moto. y v vy vx x

In modo del tutto analogo possiamo scomporre il vettore accelerazione nelle sue componenti x e y e in sostanza l’accelerazione di un punto materiale che si muove in un piano lungo una traiettoria curva si ricava come somma vettoriale delle accelerazioni componenti. a = ax + ay y v ay a = dvx/dt + dvy/dt a ax x

x(t) = x0 + v0 t + ½ at2 x(t) = x0 + v0x t + ½ ax t2 Quindi in sostanza, le stesse equazioni del moto che abbiamo applicato al caso unidimensionale (riducibile in sostanza ad una trattazione scalare) sono applicabili al caso bidimensionale (trattazione vettoriale), applicandole alle componenti del vettore. Un caso interessante che possiamo trattare subito quindi è il caso di un moto in un piano con accelerazione costante, di cui abbiamo già trattato il caso unidimensionale. Avevamo visto che nel caso unidimensionale l’equazione del moto per a = costante era: Dovendo essere ax e a y costanti (il vettore a si mantiene immutato nel tempo) avremo per le due componenti del moto x e y : x(t) = x0 + v0 t + ½ at2 x(t) = x0 + v0x t + ½ ax t2 s(t) = s0 + v0 t + ½ a t2 y(t) = y0 + v0y t + ½ ay t2

Moto di un proiettile E questa infallibile equazione purtroppo è quella che viene utilizzata nei bombardamenti!

Moto circolare uniforme Consideriamo adesso il caso di un punto che si muove di moto circolare uniforme: Intendiamo il moto lungo una circonferenza di raggio r con velocità costante in modulo. E’ ovvio che, sebbene il vettore velocità v sia costante in modulo, esso cambia con continuità in direzione. Esiste quindi un vettore accelerazione a che vogliamo calcolare

Piazziamo la nostra orbita circolare all’origine di un sistema di assi cartesiani , consideriamo due istanti t1 e t2 in cui il punto si trova in posizioni simmetriche rispetto all’asse y , e definiamo con θ l’angolo fra i due vettori posizione agli istanti t1 e t2 Poiché ad ogni istante il vettore velocità è tangente alla circonferenza, e cioè risulta ortogonale al raggio, risulta che l’angolo fra i due vettori v1 e v2 è = θ v1 y θ v2 v1 v2 θ Risulta quindi che questi due triangoli sono simili (triangoli isosceli con lo stesso angolo al vertice) r Corda Δv x θ r θ r v1 v2

Δv / Δt = v2 / r  a = lim (Δv / Δt) = v2 / r Corda Δv θ θ r r v v Trattandosi di triangoli simili, i lati corrispondenti saranno proporzionali: Corda / r = Δv / v Considerando un processo al limite in cui θ  0 si ha: «Corda»  v dt Da cui risulta: Δv / v = v Δt / r Δv / Δt = v2 / r  a = lim (Δv / Δt) = v2 / r Accelerazione centripeta: a = v2 / r

Sistemi di riferimento inerziali e moti relativi Abbiamo introdotto varie grandezze fisiche fondamentali, la posizione di un punto materiale, la sua velocità, l’accelerazione, abbiamo introdotto anche il formalismo vettoriale, etc… e lo abbiamo fatto utilizzando liberamente un sistema di riferimento, cioè un sistema di coordinate, tipicamente un sistema di assi cartesiani X-Y. Adesso vale la pena di approfondire un po’ questa questione dei sistemi di riferimento. Supponiamo di essere a bordo di un treno che si muove con velocità costante v lungo un tratto rettilineo: il treno cioè si muove di moto rettilineo uniforme. Come in figura: Velocità v = costante

v = 200 km/h Siamo seduti e abbiamo in mano una palla da tennis. Vorremmo lanciarla al nostro vicino di posto, imprimendole quindi una velocità ortogonale a quella del treno.  Cioè vorremmo fare una cosa così v = 200 km/h

Ma siamo sicuri che mentre la palla si muove da sinistra verso destra, il treno che si muove ad alta velocità non le «scappa sotto»  E magari succede una cosa cosi ? v = 200 km/h COSA NE PENSATE ?

Un sistema di riferimento del genere si chiama Si osserva che se il treno è in moto rettilineo uniforme, e cioè NON è soggetto ad alcuna accelerazione, non c’è nessun esperimento che possiamo fare a bordo che ci dia informazioni sulla velocità del treno. E infatti, l’unica informazione che abbiamo sul fatto che il treno è in moto, ci viene dal panorama che osserviamo dai finestrini. Se li chiudiamo, noi a tutti gli effetti NON possiamo affermare se il treno è fermo o è in moto. Tutti gli esperimenti che faremo a bordo del treno, e che riferiremo rispetto ad un sistema di riferimento ad esso solidale, daranno gli stessi risultati, sia che il treno sia fermo, sia che sia in moto rettilineo uniforme. Un sistema di riferimento del genere si chiama Sistema Inerziale

Un osservatore a bordo del treno osserverà che: La pallina da tennis si muove lungo la direzione trasversale di moto accelerato mentre possiede velocità zero lungo la direzione longitudinale del treno Allo stesso tempo, un osservatore a terra fuori dal treno che ne osserva il moto longitudinale, misurerà invece una velocità della pallina da tennis pari a quella del treno In sostanza: i due osservatori NON concordano sulla velocità longitudinale della pallina

E riguardo al moto trasversale della pallina, quello che da dentro risulta accelerato, cosa si osserverà da fuori ? Si osserva esattamente lo stesso moto accelerato ! Quindi: due osservatori situati in due sistemi inerziali, concordano sulla misura delle accelerazioni ma NON sulla misura delle velocità.

Cinematica in una o più dimensioni: riassunto generale

Abbiamo iniziato definendo le grandezze fisiche fondamentali per trattare il moto in una dimensione: Posizione Spostamento: cambiamento di posizione Velocità: rapidità con cui cambia la posizione Accelerazione: rapidità con cui cambia la velocità

Abbiamo visto che si tratta di grandezze vettoriali, anche se nel caso di moto in una dimensione possiamo trattare il problema adottando il formalismo scalare. Abbiamo preso dimestichezza con il problema della risoluzione temporale di un dato fenomeno fisico: Per esempio: poiché lo spostamento è definito some la variazione di posizione in un dato intervallo di tempo, la variazione di posizione durante l’intervallo Δt di un punto materiale che si muove di un moto «bizzarro» può non essere esaustiva. Δr x O Δt Tempo t

v = Δr / Δt v = Δr / Δt = 0 x Δr = 0 Δt Ci siamo resi conto che «campionando» il nostro fenomeno fisico (in questo caso il moto rettilineo di un punto materiale) con un intervallo di tempo relativamente lungo, perdiamo dettagli che potrebbero essere importanti. E infatti, applicando a questo caso la definizione di velocità, abbiamo stabilito che la formula: deve essere intesa come velocità media, grandezza fisica a volte utile, ma a volte meno utile. Per esempio nel caso seguente: v = Δr / Δt Δr = 0 x O Risulterebbe: v = Δr / Δt = 0 Δt Tempo t

Ci siamo quindi resi conto della opportunità di campionare il fenomeno con una maggiore risoluzione temporale, cioè con intervallo di tempo Δt sempre più piccoli, fino a pervenire a una rappresentazione grafica «continua» della posizione x(t) in funzione del tempo: x x Δt→0 Tempo t Tempo t

v = lim ( Δr/Δt ) m / s x = v t x x Per ogni istante t abbiamo definito la velocità istantanea v(t) come il valor limite a cui tende il rapporto Δr / Δt quando Δt tende a zero: v = lim ( Δr/Δt ) m / s Δt→0 x = v t x x Δt→0 In ogni punto, la velocità istantanea v(t) è il coefficiente angolare della retta tangente la curva x(t) Tempo t Tempo t

Essendo in grado di ricavare una serie «fitta» di punti per la velocità istantanea v(t), siamo stati in grado di farne una interpolazione grafica, e ci siamo resi conto che a questo punto eravamo in grado di applicare le stesso processo a limite (Δt  0) per ricavare l’accelerazione istantanea, che in ogni punto è il coefficiente angolare della retta tangente alla funzione velocità v(t) così come la velocità istantanea era il coefficiente angolare della retta tangente alla funzione spostamento x(t). A questo proposito abbiamo visto un esempio abbastanza semplice: una particella che parte da un punto P localizzato a 1m dall’origine e si sposta verso il punto Q localizzato a 5 m dall’origine e quindi torna indietro al punto R a 2 m dall’origine. P R Q 0 1 2 3 4 5 6 7 8 9 x

x Q R P t Abbiamo definito un sistema di assi cartesiani per x e t. Lo spostamento in questo sistema di assi sarà descritto da una curva così. x Q 1 2 3 4 5 6 m R P t 1 2 3 4 sec

Abbiamo calcolato la velocità istantanea vi (ti) in numero di punti sufficientemente elevato di punti x Q R P t 1 2 3 4 sec

A questo punto abbiamo definito un sistema di assi cartesiani per vx e t, e abbiamo Riportato i valori delle velocità istantanee calcolate nei vari punti e abbiamo operato una interpolazione grafica vx P S Q W -8 -4 0 4 m/s R t 1 2 3 4 sec

La linea curva che abbiamo individuato nel piano (vx , t) altro non è che la rappresentazione grafica della velocita del punto materiale in funzione del tempo vx (t). vx -8 -4 0 4 m/s t 1 2 3 4 sec

Di questa funzione vx(t) potremo calcolare l’accelerazione istantanea punto ricordando che a = dv /dt è la pendenza della retta tangente in ogni punto vx -8 -4 0 4 m/s t 1 2 3 4 sec

Abbiamo anche visto che nel caso unidimensionale, l’equazione del moto di un punto materiale che si muove a partire da un punto inziale x0, con una velocità iniziale pari a v0 e con una accelerazione a costante è la seguente: x(t) = x0 + v0 t + ½ at2 E abbiamo visto alcuni esempi in cui a = g = −9,8 m/s2

x-y è ovviamente sempre un moto unidimensionale. Poi siamo passati dal caso unidimensionale al caso bidimensionale (moto in un piano) e ci siamo resi conto che in questo caso l’uso del formalismo vettoriale non è opzionale ma risulta obbligatorio. Questo in quanto non esiste una direzione unica, e la direzione del moto va quindi definita dalle stesse grandezze in gioco. Infatti, in un piano x-y , un punto materiale può manifestare il suo moto in una qualunque direzione. In particolare, un punto che si muova lungo una linea curva, cambia continuamente direzione. Tuttavia, ci siamo resi conto che il moto delle proiezioni del punto lungo le componenti x-y è ovviamente sempre un moto unidimensionale.

y x y vx vy ax ay yQ yP xP xQ x Mentre il punto materiale si muove lungo la traiettoria curva, le sue proiezioni sugli assi x e y si muovono di moto rettilineo (ma non necessariamente uniforme). y Quindi: tutto ciò che abbiamo imparato sulle equazioni del moto in una dimensione può essere tranquillamente applicato alle componenti lungo gli assi x e y delle varie grandezze fisiche: x y vx vy ax ay yQ Q yP P xP xQ x

Poi, a proposito di moti in un piano (x-y) abbiamo definito un particolare moto, il cosiddetto moto circolare uniforme. Abbiamo detto che per moto circolare uniforme intendiamo il moto lungo una circonferenza di raggio r con velocità costante in modulo E abbiamo scoperto che l’accelerazione che provoca il continuo cambiamento di velocità (non in modulo ma in direzione e verso) è costante in modulo, è sempre diretta verso il centro della circonferenza, e vale: a = v2 / r (accelerazione centripeta)

Lezione III –seconda parte Avviare la presentazione col tasto “Invio”

ESERCIZI

Esempio 1 Un bombardiere vola con velocità orizzontale vx costante di 400 km/h ad una altezza di 3000 m dirigendosi verso un punto che si trova esattamente sulla verticale del suo bersaglio. Quesito: a quale angolo di vista ф deve essere sganciato il proiettile per colpire il bersaglio ? Definiamo il quesito in un sistema di assi cartesiani di riferimento x-y y 3000 m vx x

y x Quello che ci aspettiamo è una cosa del genere, e siamo interessati alla determinazione dell’angolo di vista ф al quale deve essere sganciato il proiettile y 3000 m ф x

y = v0y t – ½ g t2 dove v0y= 0 e y = −3000 m La velocità iniziale v0 del proiettile al momento in cui viene sganciato avrà le seguenti componenti: v0x = 400 km/h = 111 m/s v0y = 0 Il tempo t di caduta del proiettile è connesso all’altezza della caduta y dall’equazione: y = v0y t – ½ g t2 dove v0y= 0 e y = −3000 m Da cui t = (−2y/g)1/2  (−2(−3000) m / 9,8 m/s2)1/2 = 24,8 s La distanza orizzontale x percorsa dal proiettile durante questo tempo t sarà: x = v0x t = 111 m/s x 24,8 s = 2750 m L’angolo sarà ф = arctan (x/y) = arctan (2750/3000) = 42,5°

Esempio 2 Un giocatore di calcio colpisce una palla ad un angolo di 30° con l’orizzontale, imprimendo una velocità iniziale di 20 m/s.

Per rispondere ai quesiti, supporremo che il moto della palla avviene in un piano verticale. y v0 = 20 m/s Ф = 30° x

1° Quesito: Trovare l’istante t in cui la palla raggiunge il punto più alto della sua traiettoria

t = v0 sin Ф / g dove: Ф = 30° v0 = 20 m/s g = 9,8 m/s2 1° Quesito: Trovare l’istante t in cui la palla raggiunge il punto più alto della sua traiettoria Nel punto più alto, la componente verticale della velocità (vy) è zero. Scriveremo quindi: vy = v0 sin Ф − gt  v0 sin Ф − gt = 0 Da cui ricaveremo: t = v0 sin Ф / g dove: Ф = 30° v0 = 20 m/s g = 9,8 m/s2 t = [20 x ½] m/s / 9,8 m/s2 = 1,02 s

2° Quesito: Qual è l’altezza massima ym raggiunta dalla palla ?

2° Quesito: Qual è l’altezza massima ym raggiunta dalla palla ? Scriveremo: y = (v0 sin Ф) t − ½ gt2 L’altezza massima si raggiunge a t = 1,02 s Quindi : ym = ([20 x ½] m/s) x 1,02 s) − 1/2 (9,8 m/s2) x (1,02 s)2 = 5,1 m

3° Quesito: Qual è lo spostamento orizzontale della palla e per quanto tempo rimane in aria ?

(v0 sin Ф) t − ½ gt2 = 0  (v0 sin Ф) t = ½ gt2 (v0 sin Ф) = ½ gt 3° Quesito: Qual è lo spostamento orizzontale della palla e per quanto tempo rimane in aria ? Scriviamo nuovamente l’equazione per la componente verticale del moto: y = (v0 sin Ф) t − ½ gt2 Riflettiamo sul fatto che lo spostamento in orizzontale richiesto si raggiunge quando la palla raggiunge una quota y uguale a quella iniziale e cioè y = 0 . La formula pertanto si riduce a: (v0 sin Ф) t − ½ gt2 = 0  (v0 sin Ф) t = ½ gt2 (v0 sin Ф) = ½ gt t = 2 (v0 sin Ф) / g t = (40 m/s x ½ ) / 9,8 m/s2 = 2,04 s Per lo spostamento orizzontale scriveremo: x = v x t = (v0 cos ф) t = 20 m/s x ½ √(3) x 2,04 = 35 m

vx = (v0 cos ф) t = 20 m/s x ½ √(3) = 17,3 m/s 4° Quesito: Qual è la velocità della palla quando tocca terra ? In sostanza, per definire il vettore velocità in questione dobbiamo ricavare le sue componenti vx e vy per le quali potremo scrivere: vx = (v0 cos ф) t vy = v0 sin ф − gt Dove: t = 2,04 s, e quindi: vx = (v0 cos ф) t = 20 m/s x ½ √(3) = 17,3 m/s vy = v0 sin ф − gt = 20 m/s x ½ − ( 9,8 m/s2 ) x 2,04 s = −10 m/s v = (v2x + v2y)½ = 20 m/s ф = arctan (vx / vy) = arctan (−10/17,3) = −30°

vx = (v0 cos ф) = 20 m/s x ½ √(3) = 17,3 m/s 4° Quesito: Qual è la velocità della palla quando tocca terra ? In sostanza, per definire il vettore velocità in questione dobbiamo ricavare le sue componenti vx e vy per le quali potremo scrivere: vx = (v0 cos ф) vy = v0 sin ф − gt Dove: t = 2,04 s, e quindi: vx = (v0 cos ф) = 20 m/s x ½ √(3) = 17,3 m/s vy = v0 sin ф − gt = 20 m/s x ½ − ( 9,8 m/s2 ) x 2,04 s = −10 m/s v = (v2x + v2y)½ = 20 m/s ф = arctan (vx / vy) = arctan (−10/17,3) = −30°

y v = 20 m/s v = 20 m/s x Ф = 30° Ф = 30° Ф = -30° Risultato prevedibile in base a semplici considerazioni di simmetria . y v = 20 m/s v = 20 m/s Ф = 30° Ф = 30° Ф = -30° x

Esempio 3 Un cannone viene puntato verso un bersaglio posto ad una altezza h che, attraverso un semplice meccanismo, viene abbandonato in caduta libera esattamente quando il proiettile lascia la bocca del cannone. Si osserva che: qualunque sia la velocità iniziale del proiettile, esso colpisce sempre il bersaglio.

Spiegare il fenomeno.

Come spiegare il fenomeno ? Faremo le seguenti considerazioni: se non intervenisse l’accelerazione dovuta alla gravità: Il bersaglio non cadrebbe Il proiettile si muoverebbe in linea retta verso il bersaglio

In un dato tempo t, il proiettile cade verso il basso di una distanza −½ gt2 dalla posizione che avrebbe avuto lungo la linea retta di volo −½ gt2 Nello stesso intervallo di tempo, il bersaglio cade della medesima distanza −½ gt2 lungo la verticale Quindi quando il proiettile incrocia la traiettoria di caduta del bersaglio, se lo trova esattamente davanti !!!

Esempio 4 La luna gira intorno alla terra facendo un giro completo in 27,3 giorni. Si assuma che l’orbita sia circolare e che abbia un raggio di 385.000 km. Qual è il modulo dell’accelerazione della luna verso la terra ?

Esempio 4 La luna gira intorno alla terra facendo un giro completo in 27,3 giorni. Si assuma che l’orbita sia circolare e che abbia un raggio di 385.000 km. Qual è il modulo dell’accelerazione della luna verso la terra ? Trasformiamo prima i dati in Unità SI: r = 385.000 km = 385 x 106 m Il periodo T di rivoluzione è: T = 27,3 giorni = 23,6 x 105 s La velocità della luna (in modulo) che supporremo costante é: v = 2πr / T = 1020 m /s L’accelerazione centripeta è pertanto: a = v2/r = 0,00273 m/s2 Ovvero: 2,8 x 10-4 g

Esempio 5 Si consideri un satellite artificiale che ruota attorno alla terra e si supponga per semplicità che esso viaggi proprio sopra la superfice terrestre. Quesito: Si calcoli il modulo della velocità del satellite, assumendo un raggio della terra R = 6.000 km Sulla superfice terrestre l’accelerazione di gravità vale: g = -9,8 m/s2 ed è questa l’accelerazione che fa muovere il satellite di moto circolare, è cioè la sua accelerazione centripeta. Da cui a = v2/R  v = (a R)1/2 = 7668 m/s = 27.5 km/h

Esempio 5 Si consideri un satellite artificiale che ruota attorno alla terra e si supponga per semplicità che esso viaggi proprio sopra la superfice terrestre. Quesito: Si calcoli il modulo della velocità del satellite, assumendo un raggio della terra R = 6.000 km Sulla superfice terrestre l’accelerazione di gravità vale: g = -9,8 m/s2 ed è questa l’accelerazione che fa muovere il satellite di moto circolare, è cioè la sua accelerazione centripeta. Da cui a = v2/R  v = (a R)1/2 = 7668 m/s = 27.5 km/h