Elettroni nei semiconduttori

Slides:



Advertisements
Presentazioni simili
ELETTRONE VERSO DESTRA = LACUNA VERSO SINISTRA
Advertisements

Elementi circuitali lineari: resistori  legge di Ohm  corrente
La conduzione nei solidi
ELETTRONE VERSO DESTRA = LACUNA VERSO SINISTRA
bande di energia in un conduttore
La corrente elettrica (1/2)
BANDE DI ENERGIA PERCHE’ ESISTONO I LIVELLI ENERGETICI?
Giunzioni p-n. Diodo Il drogaggio di un semiconduttore altera drasticamente la conducibilità. Ma non basta, è “statico” ... Cambiare secondo le necessità.
Bibliografia: J. Singh “Semiconductor Devices
Elettroni nei semiconduttori
Dinamica dei portatori
Lezione 15 Rivelatori a stato solido
Giorgio SPINOLO – Scienza dei Materiali - 6 marzo / 19 aprile 2007 – Corsi ordinari IUSS I semiconduttori Il drogaggio dei semiconduttori La giunzione.
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Temperatura ed Energia Cinetica (1) La temperatura di un corpo è legata alla energia cinetica.
Corso Fisica dei Dispositivi Elettronici Leonello Servoli 1 Temperatura ed Energia Cinetica (1) La temperatura di un corpo è legata alla energia cinetica.
I LASER A SEMICONDUTTORE
IL LEGAME METALLICO B, Si, Ge, As, Sb, Te, Po, At
Semiconduttori Struttura e proprietà.
LM Fisica A.A.2011/12Fisica dei Dispositivi a Stato Solido - F. De Matteis Transistor a effetto di campo FET Ha ormai sostituito il BJT in molte applicazioni.
LM Fisica A.A.2013/14Fisica dei Dispositivi a Stato Solido - F. De Matteis Conduttori metallici I metalli costituiscono le interconnessioni tra i diversi.
Giunzioni p-n. Diodo Il drogaggio di un semiconduttore altera drasticamente la conducibilità. Ma non basta, è “statico” ... Cambiare secondo le necessità.
Lo stato solido 1. Semiconduttori.
LM Sci&Tecn dei Materiali A.A.2015/16Fisica dei Dispositivi a Stato Solido - F. De Matteis1 Crisi della descrizione classica del mondo fisico Radiazione.
1 Fenomeni di Trasporto II - Trasporto di calore – Equazione energia Equazione dell’energia termica Velocità di accumulo dell’energia interna per unità.
Modulo di Elementi di Trasmissione del Calore Conduzione Titolare del corso Prof. Giorgio Buonanno Anno Accademico Università degli studi di.
Capacità elettrica Condensatori. Il condensatore è il sistema più semplice per avere un campo elettrico costante e poter immagazzinare energia elettrostatica.
LM Sci&Tecn dei Materiali A.A.2015/16Fisica dei Dispositivi a Stato Solido - F. De Matteis 1 Fisica dei Dispositivi a Stato Solido 6 CFU Fabio De Matteis.
Modello di Rutherford (1911 – 1913) Attraverso l’analisi dei risultati sulla diffusione delle particelle  da parte di lamine sottili, Rutherford mostrò.
Piccioni Sara e Fidanza Davide;
Carica elettrica Propietà della materia Posseduta da: Elettroni (e-)
Transizioni (o passaggi) di stato
LA TABELLA PERIODICA DEGLI ELEMENTI
La velocità delle reazioni chimiche
Giunzioni p-n. Diodo Il drogaggio di un semiconduttore altera drasticamente la conducibilità. Ma non basta, è “statico” ... Cambiare secondo le necessità.
Il nuovo Invito alla biologia.blu
Dinamica dei portatori
Chimica Fisica II Scienza dei Materiali NMR 1^ Parte
13/11/
Conduttori e semiconduttori organici
Convezione.
Capacità MOS Strato di ossido su di un semiconduttore drogato p
1) Elettrone in una buca di potenziale microscopica :
EPR Chimica Fisica II Scienza dei Materiali
Caratteristiche e proprietà dei solidi
Dalla struttura atomica
Figura 1-9 Schema della decomposizione di carbonato di calcio con formazione di un solido A (56.0% in massa) e di un gas B (44.0% in massa).
COMPOSTI ORGANICI DEL SILICIO
I componenti della materia
13/11/
Fisica dei Dispositivi a Stato Solido
Modelli stellari omologhi
Sandro Barbone Luigi Altavilla
Sandro Barbone Luigi Altavilla
FISICA DEI SEMICONDUTTORI
Dinamica dei portatori
Giunzioni p-n. Diodo Il drogaggio di un semiconduttore altera drasticamente la conducibilità. Ma non basta, è “statico” ... Cambiare secondo le necessità.
Teorema del Viriale e stato fisico del gas stellare
Light Emitting Diode ovvero Diodo emittente luce
Vibrazioni di molecole poliatomiche
Elettroni nei semiconduttori
Formazione di bande di energia
1.
Capacità elettrica Condensatori.
La struttura dell'atomo
1.
Cariche in movimento legge di Ohm Circuiti in DC
I liquidi e loro proprietà
Conduttori metallici I metalli costituiscono le interconnessioni tra i diversi componenti di un circuito e verso l'esterno Ma in opportune condizioni possono.
Valitutti, Falasca, Amadio
Transcript della presentazione:

Elettroni nei semiconduttori Risolvendo l'eq di Schrodinger per un cristallo semiconduttore si ottiene una relazione di dispersione E-k. Struttura a bande Interessa soprattutto top della banda di valenza e fondo della banda di conduzione. Il top della banda di valenza occorre a k=0 Il fondo della banda di conduzione occorre a k=0 per alcuni semiconduttori (GaAs, InP, etc.) Per altri occorre a k≠0 (Si, Ge, AlAs, etc.) LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Struttura a bande Gap diretta → forte accoppiamento con la luce Gap indiretta → debole accoppiamento con la luce Gap Diretta intorno al minimo Conservazione del momento favorisce transizioni verticali Massa efficace Gap Indiretta intorno al minimo Nel Si si hanno sei minimi equivalenti lungo l'asse x, y, z in corrispondenza del valore h/m*= (d2/dk2 E) massa efficace uguale all’inverso della derivata seconda dell’energia Parabola ripida  massa eff piccola (inerzia) light Parabola larga  massa eff grande (inerzia) heavy m*l massa longitudinale 0.98 m0 m*t massa trasversale 0.19 m0 LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis Fisica dei Dispositivi a Stato Solido - F. De Matteis 2 2

Struttura a bande Masse effettive più «pesanti» corrispondono a bande più «larghe». E viceversa Vicino al top della banda di valenza ci sono due curve. Buche pesanti Buche leggere \ Minore il gap tra bande minori le masse efficaci In tutte le espressioni ricavate fin qui occorrerà usare la massa efficace al posto della massa reale dell'elettrone m0 Cosa è mDOS? Vediamo Gap diretta → m* unica Gap indiretta → m*DOS combinazione delle diverse masse effettive LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Massa efficace in banda di conduzione Eq di un ellissoide di rotazione centrata in k0 Assi a, b, b I 6 minimi equivalenti (±x, ±y, ±z) Numero di stati tra k0 e k0+dk Massa efficace in banda di valenza In banda di conduzione una sezione ad E cost disegna sei ellissi In banda di valenza due cerchi La banda di valenza è doppia Buche pesanti Buche leggere LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Buche nei semiconduttori La banda di valenza è completamente piena. La banda di conduzione è vuota T = 0 K La banda di valenza cede qualche elettrone. Restano dei vuoti. La banda di conduzione acquista qualche elettrone La massa della buca è positiva (quella dell'elettrone mancante in banda di valenza sarebbe negativa) T > 0 K Le buche galleggiano come bolle Gli elettroni cadono come biglie Lo stato vuoto è chiamato buca, ed è considerato una particella con carica e momento -ke LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

EX 2.3 m0=0,91x10-30 kg ħ=1,05x10-34Js Calcoliamo l’energia di un elettrone e di una buca nella banda delle lacune pesanti di un semiconduttore a k=0,1 Å-1 La massa della lacuna pesante è pari a m0/2 L’energia di un elettrone in banda di valenza è Per cui LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Silicio Relativamente facile da produrre Si lavora agevolmente Possiede un ossido naturale di alta qualità che può fungere da isolante Bandgap indiretta di 1.11 eV (300K) Minimo della banda di conduzione è nella direzione k= 2/a (0.85,0,0) ] Parametro reticolare a=5.43 Å Scarse proprietà ottiche (no laser) LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Arseniuro di Gallio Struttura a bande molto buona. Non possiede un ossido che può fungere da isolante Bandgap diretta di 1.43 eV (300K) Il fondo della banda di conduzione è isotropo → Superfici isoenergetiche sferiche Parametro reticolare a=5.65 Å Ottime proprietà ottiche e di trasporto in banda di conduzione m*=0.067 m0 m*hh=0.45m0 m*lh=0.1m0 LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Altri semiconduttori Ge semiconduttore a gap indiretta. Minimo della banda di conduzione nel punto L [1 1 1]. 8 punti di cui solo 4 indipendenti Bandgap diretta di 0.90 eV AlAs Parametro reticolare si accorda bene con quello del GaAs Si usa in lega con GaAs per formare eterostrutture GaAs/AlGaAs LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Leghe di semiconduttori Si possono unire alcuni semiconduttori a formare delle leghe. (Parametri reticolari vicini) AlxGa1-xAs Bandgap da 1.43eV a 2.16 eV (x=0 → 0.45) Legge di Vegard Lega binaria Ex 2.4 e Ex 2.5 LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Portatori intrinseci Metalli → elettroni in banda di conduzione parzialmente piena. Densità molto alta ~1023 cm-3 Conduzione Semiconduttori → Banda di valenza piena Banda di conduzione vuota No corrente Ma se si creano degli elettroni in banda di conduzione e delle buche in banda di valenza. (Energia termica) Corrente di carica n densità di elettroni in banda di conduzione p densità di buche in banda di valenza Dipende dall'ampiezza della gap e dalla temperatura LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis Fisica dei Dispositivi a Stato Solido - F. De Matteis 12 12

Portatori intrinseci n densità di elettroni in banda di conduzione p densità di buche in banda di valenza Massa efficace della densità degli stati Approssimazione di Boltzmann Densità efficace degli stati al fondo della banda di conduzione DE=0,1 eV → fatt exp 0,01 Ogni elettrone in conduzione ha lasciato una buca in valenza Densità efficace degli stati in cima alla banda di valenza LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Portatori intrinseci Non dipendente dalla posizione di EF Ma solo da T e proprietà intrinseche Legge dell'azione di massa Nc(cm-3) Nv(cm-3) ni=pi (cm-3) Si (300K) 2.78x1019 9.84x1018 1.5x1010 Ge (300K) 1.04x1019 6.0x1018 2.33x1013 GaAs (300K) 4.45x1017 7.72x1018 1.84x106 LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Densità dei portatori La concentrazione dei portatori intrinseci diminuisce esponenzialmente con la gap di banda. Dipende fortemente dalla temperatura. La concentrazione degli intrinseci è determinata da T: non può essere controllata esternamente Se la concentrazione di portatori intrinseci supera un valore di 1015 cm-3 il materiale non è più adatto per dispositivi (troppo intrinsecamente conduttivo) Interesse per semiconduttori ad alta gap (dispositivi ad alta temperatura) Diamante, SiC, ... Ma in presenza di impurezze la situazione è molto diversa ... LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis Fisica dei Dispositivi a Stato Solido - F. De Matteis 15 15

Drogaggio:Donori e Accettori Per alterare la densità degli elettroni e delle buche nei semiconduttori e quindi ottenere valori di conducibilità maggiori, si inseriscono delle impurezze. DONORI: Aggiungono elettroni in banda di conduzione Atomi pentavalenti come P,As, Sb → Si o Ge. Atomi tetravalenti come Si, Ge come sostituenti del Ga o esavalenti come S come sostituti di As → GaAs ACCETTORI: Aggiungono buche in banda di valenza Atomi trivalenti come B, Al, Ga → Si o Ge. Atomi tetravalenti come Si, C come sostituenti del As o bivalenti come Be,Mg come sostituti di Ga → GaAs LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Livelli di Donori e di Accettori Per i donori abbiamo un elettrone in più che vede una carica positiva schermata dalla costante dielettrica del materiale. Problema dell'atomo idrogenoide con massa efficace e potenziale schermato (e0  e) La massa per i donori è la massa efficace di conduzione Per gli accettori è generalmente usata mhh* Per gli accettori abbiamo un elettrone+carica nucleare in meno. E' come se ci fosse un anti-atomo con nucleo negativo+carica positiva (buca) in più. La buca vede una carica negativa schermata dalla costante dielettrica del materiale. Problema dell'atomo idrogenoide invertito con massa efficace (mh*) e potenziale schermato (e0 → e) . Il livello di ionizzazione è EV e l'energia di legame è positiva ~1÷0.1 ~ 0,1 Ec-Ed~10 meV Ev-Ea ~10÷100 meV Ex 2.12 LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Calcoliamo le energie di livelli accettori e donori in GaAs e Si Per il GaAs la massa effettiva è 0,067 m0 e e=13,2 e0 Per il Si dobbiamo capire quale massa efficace dobbiamo usare nella espressione del livello donore La scelta giusta è di prendere la media degli inversi delle masse efficaci ovvero la massa efficace per la conduzione ms* La massa effettiva è 0,26 m0 e e=11,09 e0 Per i livelli accettori la questione è complicata dalla presenza delle due distinte bande di valenza. Una scelta ragionevole è di effettuare il calcolo considerando la massa effetiva di buca pesante. (0,45 per GaAs e 0,5 per Si) LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Portatori in semiconduttori drogati Nello stato di energia più bassa dell'atomo donore, l'elettrone extra è legato. Non può condurre. L'energia di ionizzazione è però bassa e confrontabile con l'energia termica. n-p≠0 Ma la legge di azione di massa è ancora valida np=ni2 Infatti l'espressione per la densità di elettroni in banda di conduzione rimane sostanzialmente valida ma EF cambierà con il drogaggio. Possiamo scrivere EF ≠ EFi Il livello di Fermi si sposta verso la banda di conduzione (tipo n). L'approssimazione di Boltzmann-Maxwell per la probabilità di occupazione comincia a perdere validità. In seguito assumeremo che tutti i donori o accettori sono ionizzati W. B. Joyce and R. W. Dixon,Appl. Phys.Lett., 31, pp. 354, (1977) Soluzione numerica Joyce-Dixon Boltzmann T = 0 Ovvero metalli http://ecee.colorado.edu/~bart/book/book/chapter2/ch2_6.htm LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Popolazione dei livelli di impurezza A bassa temperatura tutti gli elettroni sono confinati. Freezeout Al crescere della temperatura la frazione di donori eccitati cresce fino alla completa ionizzazione e la densità di portatori diviene uguale alla densità di donori. Regione di saturazione A un certo punto inizieranno a crescere i portatori provenienti dalla banda di valenza Frazione di donori non ionizzati LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Semiconduttori drogati pesantemente Al crescere della concentrazione di dopanti la situazione può complicarsi. Bande di impurezze Perturbazione della forma delle bande Restringimento della separazione di banda Un'espressione ragionevole per tale restringimento è: LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis

Semiconduttori drogati pesantemente Perturbazione della forma delle bande Restringimento della separazione di banda Un'espressione ragionevole per tale restringimento è: LM Sci&Tecn dei Materiali A.A.2015/16 Fisica dei Dispositivi a Stato Solido - F. De Matteis