MATEMATICA I.

Slides:



Advertisements
Presentazioni simili
MONOMI E POLINOMI Concetto di monomio Addizione di monomi
Advertisements

2ab2 2b4 4x − 2y a 3b2y3 3b2y3b Definizione e caratteristiche
CALCOLO LETTERALE Concetto di monomio Addizione di monomi
I monomi.
Calcolo letterale.
Le espressioni algebriche letterali
Definizione La disequazione è un’uguaglianza che è verificata per certi intervalli di valore. Risolvere una disequazione significa trovare gli intervalli.
2a + 10b abx2 3a + 1 y 2 a + 1 x + 2y a − Espressioni algebriche
L’addizione ESEMPIO Rappresentazione
I Polinomi Prof.ssa A.Comis.
Disequazioni in una variabile. LaRegola dei segni La disequazione A(x) · B(x) > 0 è soddisfatta dai valori di per i quali i due fattori A(x) e B(x) hanno.
Le frazioni Che cosa è una frazione.
1 Prof.ssa A.Comis. 2 Introduzione Definizione Classificazione Principi di equivalenza Regole per la risoluzione.
NUMERI RELATIVI I numeri relativi comprendono i numeri positivi, negativi e lo 0 Esempio: +10, -5, +3, 0, -2 I numeri relativi si possono trovare all’interno.
I MONOMI: cosa sono? Supponiamo di avere 2 mele ; cosa significa? che abbiamo un numero (2) seguito dalla proprietà di essere mele; ecco questo e' un monomio,
- Addizione - Sottrazione - Moltiplicazione - Divisione.
Le Frazioni Prof.ssa A.Comis.
I Numeri.
Definizione Dati un punto O del piano α e un numero reale k ≠ 0, si dice omotetia di centro O e rapporto k la trasformazione del piano in sé che associa.
= 2x – 3 x Definizione e caratteristiche
Insiemi di numeri e insiemi di punti
Le operazioni con le frazioni
NUMERI RAZIONALI OPERAZIONI DEFINIZIONE PROPRIETA’ POTENZE SIMBOLOGIA FRAZIONI EQUIVALENTI PROPRIETA’ RAPPRESENTAZIONE SULLA.
x2 – 4x + 1 x – 3 6x 5y2 ; x2 – 4x + 1 x – 3 x – 3 ≠ 0 x ≠ 3
(se a = 0 l’equazione bx + c = 0 è di primo grado)
Calcolo letterale I POLINOMI
MONOMIO SI DICE MONOMIO UN ESPRESSIONE LETTERALE IN CUI FIGURANO SOLTANTO OPERAZIONI DI MOLTIPLICAZIONE MONOMI UGUALI: SE RIDOTTI A FORMA NORMALE HANNO.
Bergamini, Trifone, Barozzi – La matematica del triennio
Le equazioni di II°Grado
Le Equazioni Lineari Definizione:
Le disequazioni DEFINIZIONE DISEQUAZIONI EQUIVALENTI
(7x + 8x2 + 2) : (2x + 3) 8x2 + 7x + 2 2x + 3 8x2 + 7x + 2 2x + 3 4x
4 < 12 5 > −3 a < b a > b a ≤ b a ≥ b
x : variabile indipendente
Raccogliamo x al primo membro e 2 al secondo:
TEORIA EQUAZIONI.
ESPRESSIONE LETTERALE
Equazioni e disequazioni
MATEMATICA III.
Prof.ssa Carolina Sementa
MATEMATICA IV.
Le quattro operazioni.
Identità ed equazioni.
Le congruenze mod m e l'insieme Zm.
I MONOMI.
Introduzione.
L’addizione ESEMPIO Rappresentazione
I RADICALI Definizione di radicali Semplificazione di radicali
I monomi.
{ } Multipli di un numero M4 ESEMPIO 0, 4, 8, 12, 16, 20, 24, …
I numeri relativi DEFINIZIONE. Si dicono numeri relativi tutti i numeri interi, razionali e irrazionali dotati di segno (positivo o negativo). ESEMPI Numeri.
Prof.ssa Carolina Sementa
Le espressioni algebriche letterali
Equazioni di 2°grado Introduzione.
Potenze nell’insieme N
Equazioni.
EQUAZIONI DI 1° GRADO.
L’unità frazionaria ESEMPIO Rappresentazione
Le operazioni con le frazioni
Le 4 operazioni.
Le 4 operazioni.
Risolvere le moltiplicazioni tra frazioni
Le Frazioni Prof.ssa A.Comis.
Modello matematico per la risoluzione dei problemi
Le Equazioni di 1°grado Prof.ssa A.Comis.
LE DISEQUAZIONI DI PRIMO GRADO
I sistemi di equazioni di 1° grado
Concetti di base I POLINOMI
Le frazioni algebriche
I radicali Esercitazioni Dott.ssa Badiglio S..
Transcript della presentazione:

MATEMATICA I

L’INSIEME «N» DEI NUMERI NATURALI Operazioni e proprietà’ OPERAZIONE NOME DEI TERMINI RISULTATO PROPRIETA’ Addizione a + b a e b addendi somma Commutativa: a + b= b +a Associativa: (a + b)+c = a+ ( b + c) Elemento neutro: a+0=0+a=a Sottrazione a-b con a ≥ b a minuendo b sottraendo Differenza Invariantiva: a-b= ( a +c) -(b + c) a-b =(a-c)-(b-c) Due o più sottrazioni consecutive vanno eseguite nell’ordine in cui sono indicate moltiplicazione a ∙ b fattori Prodotto Commutativa: a ∙ b=b ∙ a Associativa : (a ∙ b) ∙ c=a ∙( b ∙ c ) Distributiva: a∙(b + c)=a ∙ b+ a ∙ c Elemento neutro: a ∙ 1 = 1 ∙ a = a Elemento annullatore: a ∙ 0 = 0 ∙ a =0 Legge di annullamento del prodotto: se a ∙ b=0 allora a =0 oppure b=0 Divisione esatta a:b con b≠0 a è multiplo di b ; b è un divisore di a a dividendo b divisore quoziente esatto (quoto) Invariantiva: a : b= (a ∙ c) : (b ∙ c ) a : b =(a : c) : ( b : c ) Distributiva: (b + c) : a=b : a + c : a (b -c) : a=b : a-c : a Due o più divisioni consecutive vanno eseguite nell’ordine in cui sono indicate

Operazioni e proprietà L’INSIEME «N» DEI NUMERI NATURALI Operazioni e proprietà Si definisce POTENZA di base a ed esponente n e si scrive an il prodotto di n fattori tutti uguali ad a ed inoltre a0=1 ( con a≠0) an= a ∙ a ∙a ∙………∙a Proprietà n - volte an ∙ am = an + m an : am = an-m con a≠0 n>=m an ∙ bn = (a∙ b)n an : bn = (a:b)n con b≠0 ( an)m = a n∙ m

L’INSIEME «Z» DEI NUMERI INTERI RELATIVI Operazioni e proprietà Numero intero relativo: è un numero naturale preceduto dal segno + o – Numeri concordi : sono numeri che hanno lo stesso segno Numeri discordi: sono numeri che hanno segno opposto Valore assoluto o modulo: è il numero stesso privato del segno Numeri opposti: sono due numeri con lo stesso valore assoluto ma segno opposto ADDIZIONE: la somma di due numeri relativi concordi è il numero relativo che ha per segno lo stesso segno degli addendi e per valore assoluto la somma dei valori assoluti La somma di due numeri relativi discordi è il numero relativo che ha per segno il segno dell’addendo che ha il maggiore valore assoluto e per valore assoluto la differenza tra gli addendi La somma di due numeri opposi è 0

L’INSIEME «Z» DEI NUMERI INTERI RELATIVI Operazioni e proprietà SOTTRAZIONE: la differenza è la somma del minuendo con l’opposto del sottraendo Dal momento che la sottrazione è ricondotta ad una addizione, con i numeri con segno si può parlare di SOMMA ALGEBRICA MOLTIPLICAZIONE: il prodotto di due numeri relativi è il numero che ha per valore assoluto il prodotto dei valori assoluti e per segno, il segno + se i fattori sono concordi, il segno - se i fattori sono discordi Il prodotto di tre o più numeri è il numero che ha per valore assoluto il prodotto dei valori assoluti dei fattori e per segno il + se il numero dei fattori negativi è pari, il segno – se il numero dei fattori negativi è dispari DIVISIONE: Il quoto di due numeri relativi, di cui il secondo ≠ 0 è il numero relativo, che ha per valore assoluto il quoto della divisione tra i valori assoluti del dividendo e del divisore e per segno, il segno + se i numeri sono concordi, il segno – se sono discordi

L’INSIEME «Z» DEI NUMERI INTERI RELATIVI Operazioni e proprietà Per calcolare la POTENZA di un numero intero relativo si calcola la potenza del valore assoluto e si determina il segno secondo il seguente schema: Base positiva potenza positiva Base negativa, esponente pari potenza positiva Base negativa, esponente dispari potenza negativa NOTA: Le proprietà viste in N, per le varie operazioni, sono conservate in Z. L’insieme Z contiene l’insieme N

L’INSIEME «Q» DEI NUMERI RAZIONALI Operazioni e proprietà   Riduzione al minimo comun denominatore: significa scrivere altrettante frazioni, ad esse equivalenti, ad uno stesso comun denominatore. Occorre: Ridurre le frazioni ai minimi termini se necessario Calcolare il mcm dei denominatori Moltiplicare il numeratore di ciascuna frazione per il quoto tra il mcm trovato e il corrispondente denominatore

Operazioni e proprietà L’INSIEME «Q» dei NUMERI RAZIONALI Operazioni e proprietà ADDIZIONE: la somma di due frazioni con lo stesso denominatore è a frazione che ha per denominatore lo stesso denominatore delle frazioni date e per numeratore la somma algebrica dei numeratori. In generale per sommare due o più frazioni è necessario prima ridurle allo stesso denominatore ( il minimo comune multiplo tra i denominatori) SOTTRAZIONE: la differenza tra due frazioni è la somma della prima con l’opposta della seconda MOLTIPLICAZIONE: il prodotto di due frazioni è la frazione che ha per numeratore il prodotto dei numeratori e per denominatore il prodotto dei denominatori. Per eseguire la moltiplicazione è opportuno, prima, ridurre le frazioni e, se possibile, semplificare in croce dividendo per uno stesso divisore comune i numeratori e i denominatori. DIVISIONE: il quoto di due frazioni ( la seconda ≠ 0) è il prodotto della prima per la reciproca della seconda

Operazioni e proprietà L’INSIEME «Q» dei NUMERI RAZIONALI Operazioni e proprietà La POTENZA di una frazione è una frazione che ha per numeratore la potenza del numeratore e per denominatore la potenza del denominatore; per i segni valgono le regole viste in Z. Se m, n sono numeri naturali con n≠0; d è un numero dispari p è un numero pari       La potenza di una frazione ad esponente negativo è una potenza avente per base la frazione reciproca della frazione di partenza e per esponente l’opposto dell’esponente di partenza   p e q ≠ 0 NOTE: sono conservate in Q tutte le proprietà delle operazioni. L’insieme Q contiene l’insieme Z

CALCOLO LETTERALE Monomi monomio: è un’espressione letterale in cui figurano soltanto operazioni di moltiplicazione. E’ in forma normale se è espresso come prodotto di un numero (coefficiente) per potenze di lettere diverse (parte letterale) Esempio: l’espressione -3ab è un monomio, 3 è il coefficiente, ab è la parte letterale. Monomio nullo: se il coefficiente è 0 Monomi simili: se, sono diversi dal monomio nullo e se, ridotti a forma normale, hanno la stessa parte letterale. Monomi opposti: hanno coefficienti opposti e parti letterali uguali Grado complessivo di un monomio: è la somma degli esponenti delle lettere Grado rispetto ad una lettera: è l’esponente con il quale quella lettera figura nel monomio, ridotto a forma normale Monomio di grado 0: se il monomio ha solo il coefficiente  

Operazioni con i monomi CALCOLO LETTERALE Operazioni con i monomi ADDIZIONE: la somma tra monomi non simili non si può eseguire, si lascia indicata, è un polinomio La somma tra monomi simili è un monomio simile ai dati che ha per coefficiente la somma dei coefficienti MOLTIPLICAZIONE: il prodotto tra monomi è un monomio che ha per coefficiente il prodotto tra i coefficienti e per parte letterale quella che si ottiene indicando tutte le lettere che compaiono, ciascuna con un esponente pari alla somma degli esponenti nei singoli monomi fattori DIVISIONE: il quoziente tra due monomi è un monomio in cui il coefficiente è il quoziente tra i coefficiente e la parte letterale è quella che si ottiene indicando tutte le lettere del monomio dividendo ciascuna elevata ad un esponente pari alla differenza tra gli esponenti del dividendo e del divisore POTENZA: di un monomio è un monomio che ha per coefficiente la potenza del coefficiente del monomio di partenza e per parte letterale quella in cui ciascuna lettera del monomio (base della potenza) ha per esponente il prodotto tra gli esponenti ( esponente lettera monomio base x esponente della potenza)

CALCOLO LETTERALE Polinomi Polinomio: è la somma di più monomi Polinomio ridotto: se è formato da monomi diversi Termine noto: è il termine di grado zero Grado di un polinomio: è il maggiore tra i gradi dei suoi monomi Polinomio omogeneo: se formato da monomi dello stesso grado Polinomio ordinato: è un polinomio in cui i termini sono scritti in modo che le potenze di una data lettera si susseguono crescendo o decrescendo Polinomio completo: se compaiono tutte le potenze di una data lettera  

CALCOLO LETTERALE Polinomi ADDIZIONE: La somma tra due o più polinomi si indica scrivendo di seguito i vari polinomi e procedendo poi alla riduzione dei termini simili MOLTIPLICAZIONE DI UN MONOMIO PER UN POLINOMIO: il prodotto è il polinomio che si ottiene moltiplicando il monomio per tutti i termini (monomi) del polinomio DIVISIONE TRA UN POLINOMIO E UN MONOMIO: il quoziente si ottiene dividendo ciascun termine del polinomio per il monomio divisore MOLTIPLICAZIONE DI POLINOMI: il prodotto si ottiene moltiplicando ciascun termine del polinomio per tutti i termini dell’altro

EQUAZIONI e DISEQUAZIONI Definizione di equazione EQUAZIONE: è un’ uguaglianza tra due espressioni algebriche contenente una o più lettere ; Le lettere possono essere: Incognite : rappresentano numeri non ancora determinati, di solito sono indicate con x, y, z… deve sempre esserci almeno una incognita Parametri : rappresentano numeri noti il cui valore non è specificato , di solito sono indicate con a, b, c… possono anche non essere presenti Sono CLASSIFICATE : Intere: l’incognita non compare al denominatore Frazionarie: l’incognita compare al denominatore Numeriche : non compaiono altre lettere oltre alla incognita Letterale : oltre all’incognita compare almeno un parametro PRIMO E SECONDO MEMBRO: sono le espressioni che compaiono rispettivamente a sinistra e a destra del simbolo di uguaglianza SOLUZIONI: sono quei numeri che sostituiti all’incognita rendono il primo membro uguale al secondo. Rispetto alle soluzioni una equazione può essere: Determinata : se ha un numero finito di soluzioni Indeterminata: se ha infinite soluzioni Impossibile : se non ha soluzioni

EQUAZIONI e DISEQUAZIONI Principi di equivalenza EQUAZIONI EQUIVALENTI: sono equazioni con lo stesso insieme di soluzioni   Conseguenze: è possibile trasportare un termine da un membro all’altro cambiandogli il segno è possibile eliminare termini uguali da parti opposte dell’uguale   tra Conseguenze: se tutti i termini della equazione sono tutti multipli di uno stesso numero, si può dividere per quel numero è possibile cambiare il segno di entrambi i membri, perché equivale a moltiplicare per -1 è possibile ridurre entrambi i membri ad uno stesso denominatore e poi eliminarlo

Definizione di disequazione EQUAZIONI e DISEQUAZIONI Definizione di disequazione DISEQUAZIONE: è una disuguaglianza tra due espressioni algebriche contenente una o più lettere ; Le lettere possono essere: Incognite : rappresentano numeri non ancora determinati, di solito sono indicate con x, y, z… deve sempre esserci almeno una incognita Parametri : rappresentano numeri noti il cui valore non è specificato , di solito sono indicate con a, b, c… possono anche non essere presenti Sono CLASSIFICATE : Intere: l’incognita non compare al denominatore Frazionarie: l’incognita compare al denominatore Numeriche : non compaiono altre lettere oltre alla incognita Letterale : oltre all’incognita compare almeno un parametro   SOLUZIONI: sono quei numeri che sostituiti all’incognita rendono la disuguaglianza vera.

DISEQUAZIONI Principi di equivalenza DISEQUAZIONI EQUIVALENTI: sono equazioni con lo stesso insieme di soluzioni     tra  

STATISTICA STATISTICA : è lo studio dei fenomeni collettivi UNITA’ STATISTICA: ciascuno dei soggetti su cui è svolta l’indagine statistica. Di ciascuna unità statistica vengono considerati uno o più caratteri, che si possono presentare in diverse modalità POPOLAZIONE: l’insieme delle unità statistiche FREQUENZA ASSOLUTA di una modalità: è il numero di unità statistiche per cui il carattere si presenta con quella modalità FREQUENZA RELATIVA di una modalità: è il rapporto tra la sua frequenza assoluta e il numero di unità statistiche della popolazione .

STATISTICA Le Medie        

STATISTICA Indici MODA: di un insieme di dati è il dato che si presenta con la frequenza maggiore MEDIANA di un insieme di dati numerici posti in ordine non crescente è : il valore centrale, se il numero di dati è dispari la media aritmetica dei due valori centrali, se il numero di dati è pari VARIANZA di n numeri x1, x2, x3,……xn è la media aritmetica dei loro scarti dalla media    

Teoremi di Euclide e Pitagora GEOMETRIA Teoremi di Euclide e Pitagora   II teorema di Euclide: in ogni triangolo rettangolo il quadrato costruito sull’ altezza relativa all’ipotenusa è equivalente ad un rettangolo che ha per lati le proiezioni dei cateti sull’ipotenusa: BH2= CH·HA