PABB1102-Lidia Buccellato

Slides:



Advertisements
Presentazioni simili
APPLICAZIONE DEL TEOREMA DI PITAGORA SU POLIGONI CON ANGOLI DI 30°-60°
Advertisements

Verifichiamo il Teorema di Pitagora
Risoluzione di triangoli qualsiasi
Il teorema di Pitagora.
ISTITUTO TECNICO INDUSTRIALE “E.FERMI” BARLETTA
Studio della funzione Coseno Passannante Dario
Studio della Funzione “seno”
I triangoli rettangoli
La storia di un triangolo
Il grande geometra Ilaria Cozzucoli.
PITAGORA Presentato dal prof. MAIMONE S. Prereq. Ob. Def.
Teorema di Pitagora Con gli angoli di 45°.
Applicazione di Pitagora sui poligoni con angoli di 45°
ALLA SCOPERTA DEL TEOREMA DI PITAGORA
I VETTORI di Federico Barbarossa
Equivalenza Due figure A e B si dicono equiestese o equivalenti se hanno la stessa estensione. In simboli si scrive A B Date due figure A e B la cui.
Elementi di Matematica
Curiosità sui triangoli
Risoluzione triangoli rettangoli!
LA GEOMETRIA NELLA STORIA E NELLA VITA REALE
chi ha paura della matematica?
IL TEOREMA DI PITAGORA.
Il teorema di Pitagora.
Anno Scolastico 2008/2009 Classe III D COREDO
A.D’Angelo – IL TEOREMA DI PITAGORA A.D’Angelo –
Quattro domande a PITAGORA
Secondaria di 1° di San Macario,
IL TEOREMA DI PITAGORA: Cosa afferma, come si dimostra
Istituto comprensivo G.Paccini
poligoni equivalenti Proprietà riflessiva A=A Proprietà simmetrica
Particolari terne numeriche e teorema di PITAGORA
I poliedri.
TORNA AL SOMMARIO FACILE FACILE MEDIO MEDIO DIFFICILE DIFFICILE SCEGLI IL LIVELLO DEL GIOCO Ideato e realizzato da Michele Landriscina Per Fatina Blu Per.
Il Teorema di Pitagora.
IL TEOREMA DI PITAGORA La prima dimostrazione di questo teorema è stata attribuita al matematico greco Pitagora di Samo ( a. C.). Non si sa, però,
TEOREMA DI PITAGORA.
Progetto DigiScuola Corso di formazione Gruppo Matematica Autori:
LO STOMACHION.
La vita, gli “Elementi”, i teoremi
Teorema di Euclide altezza proiezione proiezione
Il teorema di pitagora.
I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché.
DEI NUMERI IRRAZIONALI
TEOREMA DI PITAGORA In un qualsiasi triangolo rettangolo il quadrato costruito sull’ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti.
IL TEOREMA DI PITAGORA.
TEOREMA DI PITAGORA Corso neoassunti Sede Corso: IPSCT ‘F
LA LOGICA MATEMATICA Ing. Francesco Scarcella.
EQUIVALENZA DI FIGURE PIANE.
IL TEOREMA DI PITAGORA La prima dimostrazione di questo teorema è stata attribuita al matematico greco Pitagora di Samo ( a. C.). Non si sa, però,
Calcolo delle Aree Vediamo come si calcola l’area di una figura a partire da figure elementari.
Il Teorema di Pitagora Museo Mateureka
La similitudine.
IL PIANO CARTESIANO E LA RETTA
TEOREMA. In un triangolo rettangolo il quadrato costruito sull’ipotenusa è equivalente alla somma dei quadrati costruiti sui cateti. L’enunciato del teorema.
Progetto “Diritti a scuola”
Prof.ssa Livia Brancaccio 2015/16
EQUIVALENZA E EQUISCOMPONIBILITA’
IL TEOREMA DI PITAGORA La prima dimostrazione di questo teorema è stata attribuita al matematico greco Pitagora di Samo ( a. C.). Non si sa, però,
Prof.ssa Giovanna Scicchitano
Il teorema di Pitagora.
IL TEOREMA DI PITAGORA.
ovvero: alla ricerca dei triangoli rettangoli (di Anna Landoni)
PABB1102-Lidia Buccellato
IL TEOREMA DI PITAGORA.
Il teorema di Pitagora.
Teorema di Pitagora C2 + c2 = i = i = 100.
IL TEOREMA DI PITAGORA.
PABB1102-Lidia Buccellato
PABB1102-Lidia Buccellato
Il teorema di Pitagora.
Transcript della presentazione:

PABB1102-Lidia Buccellato Mod. 4- Ambienti di Apprendimento e TIC IL TEOREMA DI PITAGORA PABB1102-Lidia Buccellato

Verifichiamo il Teorema di Pitagora Enunciato: In un triangolo rettangolo il quadrato costruito sull’ipotenusa è equivalente alla somma dei quadrati costruiti sui cateti

IL TRIANGOLO RETTANGOLO IPOTENUSA CATETO MINORE i C 2 C 1 CATETO MAGGIORE

Quadrato costruito sul cateto minore Quadrato costruito sull’ipotenusa sul cateto maggiore

i c 1 Costruiamo 3 quadrati : c 2 G R V l = i l = c 2 l = c 1

Sistemiamo al loro posto i quadrati G G V R V R

Scomponiamo i quadrati per mezzo del quadratino Q e infine il GIALLO Prima il ROSSO Poi il VERDE G V Q R Scomponiamo i quadrati per mezzo del quadratino Q

Riportiamo i quadratini uno per uno su quello GIALLO V Q R Riportiamo i quadratini uno per uno su quello GIALLO

G Q V R prima i ROSSI

G V Q R

G Q R V Q

G Q R V Q poi i VERDI

G R V Q

il quadrato GIALLO è stato riempito totalmente V Q R il quadrato GIALLO è stato riempito totalmente dal ROSSO e dal VERDE

Pertanto: GIALLO VERDE GIALLO = ROSSO + VERDE ROSSO

Ma GIALLO VERDE 2 GIALLO = i 2 ROSSO = c 1 ROSSO 2 VERDE = c 2

Allora GIALLO i = c + c 2 2 2 VERDE 1 2 Da cui: ROSSO

Allora i = c + c c = i - c c c i i c c GIALLO VERDE = - ROSSO 2 2 2 1

FINE